Spatio-temporal interpolation of total electron content using a GPS network

被引:14
|
作者
Deviren, M. N. [1 ]
Arikan, F. [1 ]
Arikan, O. [2 ]
机构
[1] Hacettepe Univ Beytepe, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
[2] Bilkent Univ, Dept Elect & Elect Engn, TR-06533 Ankara, Turkey
关键词
Spatio-temporal interpolation of TEC; GPS network for monitoring of Space Weather; Total electron content;
D O I
10.1002/rds.20036
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Constant monitoring and prediction of Space Weather events require investigation of the variability of total electron content (TEC), which is an observable feature of ionosphere using dual-frequency GPS receivers. Due to various physical and/or technical obstructions, the recordings of GPS receivers may be disrupted resulting in data loss in TEC estimates. Data recovery is very important for both filling in the data gaps for constant monitoring of ionosphere and also for spatial and/or temporal prediction of TEC. Spatial prediction can be obtained using the neighboring stations in a network of a dense grid. Temporal prediction recovers data using previous days of the GPS station in a less dense grid. In this study, two novel and robust spatio-temporal interpolation algorithms are introduced to recover TEC through optimization by using least squares fit to available data. The two algorithms are applied to a regional GPS network, and for a typical station, the number of days with full data increased from 68% to 85%.
引用
收藏
页码:302 / 309
页数:8
相关论文
共 50 条
  • [1] Prediction of ionospheric total electron content data using spatio-temporal residual network
    Shenvi, Nayana
    Chandrasekhar, E.
    Kumar, Anurag
    Virani, Hassanali
    [J]. ADVANCES IN SPACE RESEARCH, 2023, 72 (11) : 4856 - 4867
  • [2] Spatio-Temporal Interpolation using gstat
    Graeler, Benedikt
    Pebesma, Edzer
    Heuvelink, Gerard
    [J]. R JOURNAL, 2016, 8 (01): : 204 - 218
  • [3] Spatio-Temporal Prediction of Ionospheric Total Electron Content Using an Adaptive Data Fusion Technique
    Secil Faruk Erken
    Ali Karatay
    [J]. Geomagnetism and Aeronomy, 2019, 59 : 971 - 979
  • [4] Spatio-Temporal Prediction of Ionospheric Total Electron Content Using an Adaptive Data Fusion Technique
    Erken, Faruk
    Karatay, Secil
    Cinar, Ali
    [J]. GEOMAGNETISM AND AERONOMY, 2019, 59 (08) : 971 - 979
  • [5] Soil water content interpolation using spatio-temporal kriging with external drift
    Snepvangers, JJJC
    Heuvelink, GBM
    Huisman, JA
    [J]. GEODERMA, 2003, 112 (3-4) : 253 - 271
  • [6] STDIN: Spatio-temporal distilled interpolation for electron microscope images
    Wang, Zejin
    Sun, Guodong
    Li, Guoqing
    Shen, Lijun
    Zhang, Lina
    Han, Hua
    [J]. NEUROCOMPUTING, 2022, 505 : 188 - 202
  • [7] Spatio-Temporal Depth Interpolation (STDI)
    Ochs, Matthias
    Bradler, Henry
    Mester, Rudolf
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1742 - 1748
  • [8] Adaptive spatio-temporal interpolation methods
    Gao, J
    Revesz, P
    [J]. Proceedings of the 8th Joint Conference on Information Sciences, Vols 1-3, 2005, : 1622 - 1625
  • [9] Video error concealment using spatio-temporal interpolation with snakes
    Matera, A
    De Natale, AGB
    [J]. ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 83 - 86
  • [10] Network Analysis Using Spatio-Temporal Patterns
    Miranda, Gisele H. B.
    Machicao, Jeaneth
    Bruno, Odemir M.
    [J]. 5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738