Anomaly freedom in perturbative models of Euclidean loop quantum gravity

被引:10
|
作者
Wu, Jian-Pin [1 ]
Bojowald, Martin [2 ]
Ma, Yongge [3 ]
机构
[1] Yangzhou Univ, Ctr Gravitat & Cosmol, Coll Phys Sci & Technol, Yangzhou 225009, Jiangsu, Peoples R China
[2] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[3] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
关键词
QUANTIZATION; CONSTRAINTS; DYNAMICS; REAL;
D O I
10.1103/PhysRevD.98.106009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Euclidean gravity provides an interesting test system for an analysis of cosmological perturbations in an effective Hamiltonian constraint with holonomy modifications from loop quantum gravity. This paper presents a discussion of scalar modes, with a specific form of the holonomy modification function derived from a general expansion in a connection formulation. Compared with some previous models, the constraint brackets are deformed in a different and more restricted way. A general comparison of anomaly-free brackets in various effective and operator versions shows an overall consistency between the different approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Boundary operators in Euclidean quantum gravity
    Avramidi, IG
    Esposito, G
    Kamenshchik, AY
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (09) : 2361 - 2373
  • [42] Stability issues in Euclidean quantum gravity
    Modanese, G
    [J]. PHYSICAL REVIEW D, 1999, 59 (02)
  • [43] Cosmological landscape and Euclidean quantum gravity
    Barvinsky, A. O.
    Kamenshchik, A. Yu
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (25) : 7043 - 7048
  • [44] Dominant topologies in Euclidean quantum gravity
    Carlip, S
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) : 2629 - 2638
  • [45] Euclidean quantum gravity and stochastic inflation
    Hwang, Dong-il
    Lee, Bum-Hoon
    Stewart, Ewan D.
    Yeom, Dong-Han
    Zoe, Heeseung
    [J]. PHYSICAL REVIEW D, 2013, 87 (06)
  • [46] EUCLIDEAN QUANTUM-GRAVITY ON A LATTICE
    WEINGARTEN, D
    [J]. NUCLEAR PHYSICS B, 1982, 210 (02) : 229 - 245
  • [47] Axial gauge in Euclidean quantum gravity
    Avramidi, IG
    Esposito, G
    Kamenshchik, AY
    [J]. NUCLEAR PHYSICS B, 1997, : 245 - 246
  • [48] No-go result for covariance in models of loop quantum gravity
    Bojowald, Martin
    [J]. PHYSICAL REVIEW D, 2020, 102 (04)
  • [49] Black hole spectroscopy from loop quantum gravity models
    Barrau, Aurelien
    Cao, Xiangyu
    Noui, Karim
    Perez, Alejandro
    [J]. PHYSICAL REVIEW D, 2015, 92 (12)
  • [50] Boundary loop models and 2D quantum gravity
    Kostov, Ivan
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,