Homogeneous Lyapunov functions for polynomial systems: a Tensor product approach

被引:0
|
作者
Hajer, Bouzaouache [1 ]
Naceur, Benhadj Braiek [2 ]
机构
[1] ISETCOM, Inst Super Etud Technol Commun, Ariana, Tunisia
[2] Ecole Polytech Tunis, LECCP, La Marsa, Tunisia
关键词
polynomial systems; Kronecker product; stability; homogeneous Lyapunov function; LMIs;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper shows that the Kronecker product and the properties of tensoriel algebra are useful tools for nun quadratic stability analysis. When using them, sufficient conditions for global asymptotic stability of polynomial systems can be easily derived in terms of LMI feasibility tests for the existence of homogeneous Lyapunov functions of even degree.
引用
收藏
页码:7 / +
页数:2
相关论文
共 50 条
  • [11] H∞ Filtering for Nonlinear Parameter-Varying Systems via Homogeneous Polynomial Lyapunov Functions
    Wang Liang
    Zhou Shaosheng
    [J]. PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 496 - 501
  • [12] Homogeneous Lyapunov functions for systems with structured uncertainties
    Chesi, G
    Garulli, A
    Tesi, A
    Vicino, A
    [J]. AUTOMATICA, 2003, 39 (06) : 1027 - 1035
  • [13] Estimation of asymptotic stability regions via homogeneous polynomial Lyapunov functions
    Fujisaki, Y
    Sakuwa, R
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (06) : 617 - 623
  • [14] Estimation of asymptotic stability regions via homogeneous polynomial Lyapunov functions
    Fujisaki, Y
    Sakuwa, R
    [J]. SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 1411 - 1414
  • [15] Homogeneous Polynomial Lyapunov Functional for Stability Analysis of Systems with Delays
    Liu, Xingwen
    Liu, Yaojun
    [J]. PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3710 - 3715
  • [16] Stability Region Analysis for Polynomial Fuzzy Systems by Polynomial Lyapunov Functions
    Chen, Ying-Jen
    Tanaka, Motoyasu
    Tanaka, Kazuo
    Wang, Hua O.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2091 - 2095
  • [17] Stability and Stabilization of Heterogeneous Switched Systems with Mode-Dependent Average Dwell Time via Homogeneous Polynomial Lyapunov Functions Approach
    Yu, Shaohang
    Wu, Chengfu
    Wang, Liang
    Wu, Jia-Nan
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (16)
  • [18] Common polynomial Lyapunov functions for linear switched systems
    Mason, P
    Boscain, U
    Chitour, Y
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (01) : 226 - 245
  • [19] Discovering polynomial Lyapunov functions for continuous dynamical systems
    She, Zhikun
    Li, Haoyang
    Xue, Bai
    Zheng, Zhiming
    Xia, Bican
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2013, 58 : 41 - 63
  • [20] Lyapunov Differential Equation Hierarchy and Polynomial Lyapunov Functions for Switched Linear Systems
    Abate, Matthew
    Klett, Corbin
    Coogan, Samuel
    Feron, Eric
    [J]. 2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 5322 - 5327