An Iterative Relaxation Approach to the Solution of the Hamilton-Jacobi-Bellman-Isaacs Equation in Nonlinear Optimal Control

被引:18
|
作者
Aliyu, M. D. S. [1 ]
机构
[1] King Faisal Univ, Dept Elect Engn, Al Hasa 31982, Saudi Arabia
关键词
Affine nonlinear system; bounded continuous function; convergence; Hamilton-Jacobi-Bellman-Isaacs equation; Lyapunov equation; relaxation method; Riccati equation; ALGEBRAIC RICCATI; STATE-FEEDBACK; ALGORITHM;
D O I
10.1109/JAS.2017.7510682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an iterative relaxation method for solving the Hamilton-Jacobi-Bellman-Isaacs equation (HJBIE) arising in deterministic optimal control of affine nonlinear systems. Local convergence of the method is established under fairly mild assumptions, and examples are solved to demonstrate the effectiveness of the method. An extension of the approach to Lyapunov equations is also discussed. The preliminary results presented are promising, and it is hoped that the approach will ultimately develop into an efficient computational tool for solving the HJBIEs.
引用
收藏
页码:360 / 366
页数:7
相关论文
共 50 条
  • [31] A Hamilton-Jacobi-Bellman approach for the optimal control of an abort landing problem
    Assellaou, Mohamed
    Bokanowski, Olivier
    Desilles, Anya
    Zidani, Hasnaa
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3630 - 3635
  • [32] Hamilton-Jacobi-Bellman Approach for Optimal Control Problems of Sweeping Processes
    Hermosilla, Cristopher
    Palladino, Michele
    Vilches, Emilio
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [33] A numerical computational approach of Hamilton-Jacobi-Isaacs equation in nonlinear H-infinity control problems
    Patpong, L
    Sampei, M
    Koga, M
    Shimizu, E
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3774 - 3779
  • [34] Local solutions to the Hamilton-Jacobi-Bellman equation in stochastic problems of optimal control
    Bratus, A. S.
    Iourtchenko, D. V.
    Menaldi, J.-L.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 610 - 613
  • [35] Local solutions to the Hamilton-Jacobi-Bellman equation in stochastic problems of optimal control
    A. S. Bratus’
    D. V. Iourtchenko
    J. -L. Menaldi
    Doklady Mathematics, 2006, 74 : 610 - 613
  • [36] Nonlinear optimal control: Alternatives to Hamilton-Jacobi equation
    Huang, Y
    Lu, WM
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3942 - 3947
  • [37] Nonconvex duality and viscosity solutions of the Hamilton-Jacobi-Bellman equation in optimal control
    Raïssi, N
    Serhani, M
    JOURNAL OF CONVEX ANALYSIS, 2002, 9 (02) : 625 - 648
  • [38] Optimal Feedback Control of Cancer Chemotherapy Using Hamilton-Jacobi-Bellman Equation
    Jeong, Yong Dam
    Kim, Kwang Su
    Roh, Yunil
    Choi, Sooyoun
    Iwami, Shingo
    Jung, Il Hyo
    COMPLEXITY, 2022, 2022
  • [40] Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation
    Rakhshan, Seyed Ali
    Effati, Sohrab
    Kamyad, Ali Vahidian
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (09) : 1741 - 1756