Accuracy comparison of the data mining classification techniques for the diabetic disease prediction

被引:0
|
作者
Garg, Rakesh [1 ]
机构
[1] Amity Univ, Dept Comp Sci & Engn, Noida, Uttar Pradesh, India
关键词
data mining; diabetes; classification; Weka; PERFORMANCE ANALYSIS; RISK; CLASSIFIERS; REGRESSION; DIAGNOSIS; MELLITUS; MODELS;
D O I
10.1504/IJHTM.2021.119159
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
In the present scenario, the speedy use of the data mining (DM) techniques is observed for predicting and categorising symptoms in large medical datasets. Classification is one major DM technique that is widely used for classifying various unnoticed information from various diagnostic data. In a popular country like India, diabetes is characterised as a dangerous disease which has affected the majority of the population. The present research emphasises on the accuracy comparison of the various classifiers such as J48, random forest, sequential minimal optimisation (SMO), stochastic gradient descent (SGD), naive Bayes, logistic regression, random tree, decision stump, simple logistic, Hoeffding tree, Adaboost, and bagging, when applied to diabetic data.
引用
收藏
页码:216 / 227
页数:12
相关论文
共 50 条
  • [41] Heart disease classification using data mining tools and machine learning techniques
    Ilias Tougui
    Abdelilah Jilbab
    Jamal El Mhamdi
    [J]. Health and Technology, 2020, 10 : 1137 - 1144
  • [42] Heart disease classification using data mining tools and machine learning techniques
    Tougui, Ilias
    Jilbab, Abdelilah
    El Mhamdi, Jamal
    [J]. HEALTH AND TECHNOLOGY, 2020, 10 (05) : 1137 - 1144
  • [43] Clustering Techniques in Data Mining: A Comparison
    Garima
    Gulati, Hina
    Singh, P. K.
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 410 - 415
  • [44] Early Prediction of Diabetic Using Data Mining
    Jaber F.A.
    James J.W.
    [J]. SN Computer Science, 4 (2)
  • [45] Classification of Anemia Using Data Mining Techniques
    Sanap, Shilpa A.
    Nagori, Meghana
    Kshirsagar, Vivek
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT II, 2011, 7077 : 113 - +
  • [46] Earthquakes classification using data mining techniques
    Rodriguez-Elizalde, J
    Figueroa-Nazuno, J
    [J]. 8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL II, PROCEEDINGS: COMPUTING TECHNIQUES, 2004, : 257 - 261
  • [47] Classification of Wines Using Data Mining Techniques
    Ribeiro, Jorge
    Neves, Jose
    Sanchez, Juan
    [J]. NOVAS PERSPECTIVAS EM SISTEMAS E TECNOLOGIAS DE INFORMACAO, VOL II, 2007, : 183 - 191
  • [48] Challenges of Data Mining Classification Techniques in Mammograms
    Mahdikhani, Leyli
    Keyvanpour, Mohammad Reza
    [J]. 2019 IEEE 5TH CONFERENCE ON KNOWLEDGE BASED ENGINEERING AND INNOVATION (KBEI 2019), 2019, : 637 - 643
  • [49] Data Mining Techniques for Web Page Classification
    Fiol-Roig, Gabriel
    Miro-Julia, Margaret
    Herraiz, Eduardo
    [J]. HIGHLIGHTS IN PRACTICAL APPLICATIONS OF AGENTS AND MULTIAGENT SYSTEMS, 2011, 89 : 61 - 68
  • [50] A functional road classification with data mining techniques
    D'Andrea, Antonino
    Cappadona, Claudio
    La Rosa, Gianluca
    Pellegrino, Orazio
    [J]. TRANSPORT, 2014, 29 (04) : 419 - 430