Analysis of Lattice-Boltzmann methods for internal flows

被引:27
|
作者
Freitas, Rainhill K. [1 ]
Henze, Andreas [1 ]
Meinke, Matthias [1 ]
Schroeder, Wolfgang [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Aerodynam, D-52062 Aachen, Germany
关键词
Lattice-Boltzmann; Wall turbulence; Direct numerical simulation; BGK; MRT; CLB; CHANNEL FLOW; SIMULATION; TURBULENCE; LES;
D O I
10.1016/j.compfluid.2011.02.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The applicability of several Lattice-Boltzmann methods to wall-bounded turbulent flows is investigated. The various methods consist of the standard Bhatnagar-Gross-Krook (BGK) method with 19 (BGK19) and 27 (BGK27) discrete velocities, the multiple-relaxation-time (MRT) model with 19 discrete velocities and the cascaded Lattice-Boltzmann method (CLB). Based on the findings of turbulent channel flow it can be concluded that stability considerations, predicting the superiority of the advanced moment based schemes like the CLB and MRT method not necessarily hold for wall-bounded turbulent flows. Moreover, in some flow problems the simple BGK method with 19 discrete velocities delivers reasonable and stable results, where the other methods yield unphysical solutions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [31] Lattice-Boltzmann simulation of creeping generalized Newtonian flows: Theory and guidelines
    Gsell, Simon
    D'Ortona, Umberto
    Favier, Julien
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [32] Finite-difference lattice-Boltzmann methods for binary fluids
    Xu, AG
    [J]. PHYSICAL REVIEW E, 2005, 71 (06):
  • [33] Multiphase/multidomain computations using continuum and lattice-Boltzmann methods
    Singh, Rajkeshar
    Chao, Jianghui
    Popescu, Mihaela
    Tai, Cheng-Feng
    Mei, Renwei
    Shyy, Wei
    [J]. JOURNAL OF AEROSPACE ENGINEERING, 2006, 19 (04) : 288 - 295
  • [34] The Computational Complexity of Traditional Lattice-Boltzmann Methods for Incompressible Fluids
    Tessarotto, Marco
    Fonda, Enrico
    Tessarotto, Massimo
    [J]. RAREFIED GAS DYNAMICS, 2009, 1084 : 470 - +
  • [35] Multiphase/multidomain computations using continuum and Lattice-Boltzmann methods
    Singh, Rajkeshar
    Chao, Jianghui
    Popescu, Mihaela
    Tai, Cheng-Feng
    Mei, Renwei
    Shyy, Wei
    [J]. Journal of Aerospace Engineering, 2006, 19 (04): : 288 - 295
  • [36] Lattice-Boltzmann Water Waves
    Geist, Robert
    Corsi, Christopher
    Tessendorf, Jerry
    Westall, James
    [J]. ADVANCES IN VISUAL COMPUTING, PT I, 2010, 6453 : 74 - 85
  • [37] Accuracy of the lattice-Boltzmann method
    Maier, RS
    Bernard, RS
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 747 - 752
  • [38] Lattice-Boltzmann based large-eddy Simulations applied to industrial flows
    Derksen, J
    [J]. COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 713 - 722
  • [39] Lattice Boltzmann methods for moving boundary flows
    Inamuro, Takaji
    [J]. FLUID DYNAMICS RESEARCH, 2012, 44 (02)
  • [40] Computation of multiphase flows with lattice Boltzmann methods
    Premnath, Kannan N.
    Nave, Jean-Christophe
    Banerjee, Sanjoy
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION, 2005, 261 : 403 - 420