FIXED POINT AND MEAN ERGODIC THEOREMS FOR NEW NONLINEAR MAPPINGS IN HILBERT SPACES

被引:0
|
作者
Maruyama, Toru [1 ]
Takahashi, Wataru [1 ,2 ]
Yao, Masayuki [3 ]
机构
[1] Keio Univ, Dept Econ, Minato Ku, Tokyo 1088345, Japan
[2] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
[3] Keio Univ, Grad Sch Econ, Minato Ku, Tokyo 1088345, Japan
基金
日本学术振兴会;
关键词
Hilbert space; nonexpansive mapping; nonspreading mapping; hybrid mapping; fixed point; mean convergence; WEAK-CONVERGENCE THEOREMS; NONEXPANSIVE-MAPPINGS; HYBRID MAPPINGS; OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first consider a broad class of nonlinear mappings containing the class of generalized hybrid mappings defined by Kocourek, Takahashi and Yao [11] in a Hilbert space. Then, we prove a fixed point theorem, a mean ergodic theorem of Baillon's type [2] and a weak convergence theorem of Mann's type [14] for these nonlinear mappings in a Hilbert space.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 50 条