Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide

被引:22
|
作者
Mitchell, Claire E. [1 ]
Terranova, Umberto [1 ]
Alshibane, Ihfaf [2 ]
Morgan, David J. [1 ]
Davies, Thomas E. [1 ]
He, Qian [1 ]
Hargreaves, Justin S. J. [2 ]
Sankar, Meenakshisundaram [1 ]
de Leeuw, Nora H. [1 ]
机构
[1] Cardiff Univ, Sch Chem, Cardiff Catalysis Inst, Cardiff CF10 4AT, S Glam, Wales
[2] Glasgow Univ, Sch Chem, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
CARBON-DIOXIDE HYDROGENATION; FORMIC-ACID; MOLECULAR-HYDROGEN; CATALYTIC-HYDROGENATION; BIMETALLIC CATALYSTS; METHANOL SYNTHESIS; ROOM-TEMPERATURE; WATER; ENERGY; ADSORPTION;
D O I
10.1039/c9nj02114k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the development of palladium nanoparticles supported on Mo2C as an active catalyst for the liquid-phase hydrogenation of CO2 to formate under mild reaction conditions (100 degrees C and 2.0 MPa of a 1 : 1 CO2 : H-2 mixture). A series of Pd/Mo2C catalysts were synthesised via the modified wet-impregnation (MIm) and sol-immobilization (SIm) techniques and evaluated for CO2 hydrogenation, in an aqueous 1 M NaOH solution. MIm catalysts synthesised using PdCl2 dissolved in a 2 M HCl solution gave the highest formate yield with turnover numbers of up to 109 after 19 h. We further report the crucial role of base and the pH of the reaction medium for the hydrogenation of CO2 to formate. Based on stability studies, electron microscopic characterisation and density functional theory calculations we found that Ru has a stronger affinity than Pd to Mo2C resulting in the development of a stable bimetallic RuPd/Mo2C catalyst for the hydrogenation of CO2 to formate.
引用
收藏
页码:13985 / 13997
页数:13
相关论文
共 50 条
  • [41] Ruthenium complex immobilized on supported ionic-liquid-phase (SILP) for alkoxycarbonylation of olefins with CO2
    Xia, Shi-Ping
    Ding, Guang-Rong
    Zhang, Rui
    Han, Li-Jun
    Xu, Bao-Hua
    Zhang, Suo-Jiang
    GREEN CHEMISTRY, 2021, 23 (08) : 3073 - 3080
  • [42] TiO2-supported molybdenum carbide: An active catalyst for the aqueous phase hydrogenation of succinic acid
    Abou Hamdan, Marwa
    Loridant, Stephan
    Jahjah, Mohamad
    Pinel, Catherine
    Perret, Noemie
    APPLIED CATALYSIS A-GENERAL, 2019, 571 : 71 - 81
  • [43] Hydrogenation of CO2 to Formate using a Simple, Recyclable, and Efficient Heterogeneous Catalyst
    Gunasekar, Gunniya Hariyanandam
    Jung, Kwang-Deog
    Yoon, Sungho
    INORGANIC CHEMISTRY, 2019, 58 (06) : 3717 - 3723
  • [44] CO2 HYDROGENATION OVER CARBIDE CATALYSTS
    DUBOIS, JL
    SAYAMA, K
    ARAKAWA, H
    CHEMISTRY LETTERS, 1992, (01) : 5 - 8
  • [45] Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase
    20144600184229
    Reisner, Erwin, 1600, American Chemical Society (136):
  • [46] Highly Efficient Hydrogenation of CO2 to Formic Acid over Palladium Supported on Dication Poly(ionic liquid)s
    Li, Qun
    Huang, Tingting
    Zhang, Zichen
    Xiao, Meng
    Gai, Hengjun
    Zhou, Yu
    Song, Hongbing
    MOLECULAR CATALYSIS, 2021, 509 (509)
  • [47] Mechanistic insight into bifunctional thermocatalytic CO2 hydrogenation by Oxide-Supported Palladium
    Choi, Hyuk
    Choi, Yejung
    Kim, Jongseok
    Lee, Ju Hyeok
    Kang, Eunji
    Yun, Jieun
    Park, Hongjin
    Kim, Minkyung
    Ullah, Habib
    Shin, Kihyun
    Kim, Hyun You
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [48] Reversible lnterconversion of CO2 and Formate by a Molybdenum-Containing Formate Dehydrogenase
    Bassegoda, Arnau
    Madden, Christopher
    Wakerley, David W.
    Reisner, Erwin
    Hirst, Judy
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (44) : 15473 - 15476
  • [49] Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate
    Zhang, Zhenhua
    Zhang, Liyuan
    Hulsey, Max J.
    Yan, Ning
    MOLECULAR CATALYSIS, 2019, 475
  • [50] Mechanistic insight into bifunctional thermocatalytic CO2 hydrogenation by Oxide-Supported Palladium
    Shin, Kihyun (kihyun@hanbat.ac.kr), 1600, Elsevier B.V. (503):