Coding of Information in Limit Cycle Oscillators

被引:13
|
作者
Schleimer, Jan-Hendrik [1 ,2 ,3 ]
Stemmler, Martin [1 ,2 ,4 ]
机构
[1] Bernstein Ctr Computat Neurosci, D-10115 Berlin, Germany
[2] Bernstein Ctr Computat Neurosci, D-82152 Martinsried, Germany
[3] Humboldt Univ, Inst Theoret Biol, D-10115 Berlin, Germany
[4] Ludwig Maximilian Univ Munich, Inst Neurobiol, D-82152 Planegg Martinsried, Germany
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.103.248105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a general description of noisy limit cycle oscillators, we derive from the Fokker-Planck equations the linear response of the instantaneous oscillator frequency to a time-varying external force. We consider the time series of zero crossings of the oscillator's phase and compute the mutual information between it and the driving force. A direct link is established between the phase response curve summarizing the oscillator dynamics and the ability of a limit cycle oscillator, such as a heart cell or neuron, to encode information in the timing of peaks in the oscillation.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Driven response of time delay coupled limit cycle oscillators
    Dodla, Ramana Reddy V.
    Sen, Abhijit
    Johnston, George L.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2003, 8 (3-4) : 493 - 518
  • [22] Suppressing birhythmicity by parametrically modulating nonlinearity in limit cycle oscillators
    Saha, Sandip
    Chakraborty, Sagar
    Gangopadhyay, Gautam
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 416
  • [23] Entrainment of Micromechanical Limit Cycle Oscillators in the Presence of Frequency Instability
    Blocher, David B.
    Zehnder, Alan T.
    Rand, Richard H.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2013, 22 (04) : 835 - 845
  • [24] CHEMICAL WAVES AND THE DIFFUSIVE COUPLING OF LIMIT-CYCLE OSCILLATORS
    NEU, JC
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 36 (03) : 509 - 515
  • [25] Synchronization characteristics of an array of coupled MEMS limit cycle oscillators
    Bhaskar, Aditya
    Shayak, B.
    Rand, Richard H.
    Zehnder, Alan T.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2021, 128 (128)
  • [26] Determination of Limit Cycle by Hamiltonian Approach for Strongly Nonlinear Oscillators
    Xu, Lan
    He, Ji-Huan
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (12) : 1097 - 1101
  • [27] Collective dynamics of delay-coupled limit cycle oscillators
    Abhijit Sen
    Ramana Dodla
    George L. Johnston
    Pramana, 2005, 64 (4) : 465 - 482
  • [28] Biological receptor scheme for the robust synchronization of limit cycle oscillators
    Nagano, S
    PROGRESS OF THEORETICAL PHYSICS, 2002, 107 (05): : 861 - 877
  • [29] Noise facilitates entrainment of a population of uncoupled limit cycle oscillators
    Kumpost, Vojtech
    Hilbert, Lennart
    Mikut, Ralf
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2023, 20 (198)
  • [30] Phase Reduction Method for Strongly Perturbed Limit Cycle Oscillators
    Kurebayashi, Wataru
    Shirasaka, Sho
    Nakao, Hiroya
    PHYSICAL REVIEW LETTERS, 2013, 111 (21)