A primer on upscaling tools for porous media

被引:138
|
作者
Cushman, JH
Bennethum, LS
Hu, BX
机构
[1] Center for Applied Mathematics, Math Sciences Building, Purdue University, W. Lafayette
[2] Center for Computational Mathematics, University of Colorado at Denver, Campus Box 170, Denver, CO 80217-3364
[3] Desert Research Institute, Las Vegas, NV 89119
关键词
D O I
10.1016/S0309-1708(02)00047-7
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Over the last few decades a number of powerful approaches have been developed to intelligently reduce the number of degrees of freedom in very complex heterogeneous environs, e.g. mathematical homogenization, mixture and hybrid mixture theory, spatial averaging, moment methods, central limit or Martingale methods, stochastic-convective approaches, various other Eulerian and Lagrangian perturbation schemes, projection operators, renormalization group techniques, variational approaches, space transformational methods, continuous time random walks, and etc. In this article we briefly review many of these approaches as applied to specific examples in the hydrologic sciences. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1043 / 1067
页数:25
相关论文
共 50 条
  • [41] A new upscaling technique for the permeability of porous media: The simplified renormalization
    Renard, P
    LeLoch, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE A-SCIENCES DE LA TERRE ET DES PLANETES, 1996, 323 (10): : 859 - 864
  • [42] Upscaling retardation factors in 2-D porous media
    Gomez-Hernandez, J. Jaime
    Fu, Jianlin
    Fernandez-Garcia, Daniel
    CALIBRATION AND RELIABILITY IN GROUNDWATER MODELLING: FROM UNCERTAINTY TO DECISION MAKING, 2006, 304 : 130 - +
  • [43] Upscaling and Prediction of Lagrangian Velocity Dynamics in Heterogeneous Porous Media
    Hakoun, Vivien
    Comolli, Alessandro
    Dentz, Marco
    WATER RESOURCES RESEARCH, 2019, 55 (05) : 3976 - 3996
  • [44] Upscaling, relaxation and reversibility of dispersive flow in stratified porous media
    C. W. J. Berentsen
    C. P. J. W. van Kruijsdijk
    M. L. Verlaan
    Transport in Porous Media, 2007, 68 : 187 - 218
  • [45] Effective Flux Boundary Conditions for Upscaling Porous Media Equations
    T.C. Wallstrom
    M.A. Christie
    L.J. Durlofsky
    D.H. Sharp
    Transport in Porous Media, 2002, 46 : 139 - 153
  • [46] Upscaling Mixing-Controlled Reactions in Unsaturated Porous Media
    Perez, Lazaro J.
    Puyguiraud, Alexandre
    Hidalgo, Juan J.
    Jimenez-Martinez, Joaquin
    Parashar, Rishi
    Dentz, Marco
    TRANSPORT IN POROUS MEDIA, 2023, 146 (1-2) : 177 - 196
  • [47] Upscaling coupled heterogeneous diffusion reaction equations in porous media
    M. K. Bourbatache
    O. Millet
    C. Moyne
    Acta Mechanica, 2023, 234 : 2293 - 2314
  • [48] Clarifications about upscaling diffusion with heterogeneous reaction in porous media
    Valdes-Parada, Francisco J.
    Lasseux, Didier
    ACTA MECHANICA, 2025, 236 (03) : 1697 - 1717
  • [49] A Lab on a Chip Experiment for Upscaling Diffusivity of Evolving Porous Media
    Poonoosamy, Jenna
    Lu, Renchao
    Loenartz, Mara Iris
    Deissmann, Guido
    Bosbach, Dirk
    Yang, Yuankai
    ENERGIES, 2022, 15 (06)
  • [50] A Primer on the Dynamical Systems Approach to Transport in Porous Media
    Guy Metcalfe
    Daniel Lester
    Michael Trefry
    Transport in Porous Media, 2023, 146 : 55 - 84