HADAMARD AND FEJER-HADAMARD TYPE INEQUALITIES FOR CONVEX AND RELATIVE CONVEX FUNCTIONS VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION

被引:6
|
作者
Farid, Ghulam [1 ]
Mishra, Vishnu Narayan [2 ,3 ]
Mehmood, Sajid [4 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[2] Indira Gandhi Natl Tribal Univ, Dept Math, Amarkantak 484887, Madhya Pradesh, India
[3] L 1627 Awadh Puri Colony,Phase 2, Ayodhya 224001, Uttar Pradesh, India
[4] Govt Boys Primary Sch Sherani, Attock, Pakistan
来源
关键词
Convex functions; Hadamad inequality; Fejer-Hadamard inequality; Mittag-Leffler function; Fractional integral operators;
D O I
10.28924/2291-8639-17-2019-892
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will prove the Hadamard and the Fejer-Hadamard type integral inequalities for convex and relative convex functions due to an extended generalized Mittag-Leffler function. These results contain several fractional integral inequalities for the well known fractional integral operators.
引用
收藏
页码:892 / 903
页数:12
相关论文
共 50 条
  • [41] Conformable integral version of Hermite-Hadamard-Fejer inequalities via η-convex functions
    Khurshid, Yousaf
    Khan, Muhammad Adil
    Chu, Yu-Ming
    [J]. AIMS MATHEMATICS, 2020, 5 (05): : 5106 - 5120
  • [42] Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag-Leffler Function
    Nonlaopon, Kamsing
    Farid, Ghulam
    Yasmeen, Hafsa
    Shah, Farooq Ahmed
    Jung, Chahn Yong
    [J]. SYMMETRY-BASEL, 2022, 14 (05):
  • [43] New Hermite-Hadamard-Fejer type inequalities for GA-convex functions
    Maden, Selahattin
    Turhan, Sercan
    Iscan, Imdat
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [44] Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function
    Abbas, G.
    Farid, G.
    [J]. COGENT MATHEMATICS, 2016, 3
  • [45] HERMITE-HADAMARD, FEJER AND SHERMAN TYPE INEQUALITIES FOR GENERALIZATIONS OF SUPERQUADRATIC AND CONVEX FUNCTIONS
    Abramovich, Shoshana
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02): : 559 - 575
  • [46] STUDY ON FRACTIONAL FEJER-HADAMARD TYPE INEQUALITIES ASSOCIATED WITH GENERALIZED EXPONENTIALLY CONVEXITY
    Farid, Ghulam
    Guran, Liliana
    Qiang, Xiaoli
    Yu-Ming Chu
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (04): : 159 - 170
  • [47] ON NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR HARMONICALLY QUASI CONVEX FUNCTIONS
    Turhan, Sercan
    Iscan, Imdat
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 734 - 749
  • [48] ON NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GENERALIZED CONVEX FUNCTIONS
    Qaisar, Shahid
    He, Chuanjiang
    Hussain, Sabir
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 139 - 148
  • [49] Some Hermite–Hadamard type inequalities for functions of generalized convex derivative
    P. Kórus
    [J]. Acta Mathematica Hungarica, 2021, 165 : 463 - 473
  • [50] Fractional Ostrowski Type Inequalities via Generalized Mittag-Leffler Function
    You, Xinghua
    Farid, Ghulam
    Maheen, Kahkashan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020