TOWARDS HIGH-PRECISION FLOOD MAPPING: MULTI-TEMPORAL SAR/INSAR DATA, BAYESIAN INFERENCE, AND HYDROLOGIC MODELING

被引:0
|
作者
Refice, A. [1 ]
D'Addabbo, A. [1 ]
Pasquariello, G. [1 ]
Lovergine, F. P. [1 ]
Capolongo, D. [2 ]
Manfreda, S. [3 ]
机构
[1] CNR ISSIA, Via Amendola 122-D, I-70125 Bari, Italy
[2] Univ Bari, Dept Earth & Environm Sci, I-70125 Bari, Italy
[3] Univ Basilicata, DICEM, Matera, Italy
关键词
SAR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:1381 / 1384
页数:4
相关论文
共 50 条
  • [41] AGRICULTURAL CROP MAPPING USING OPTICAL AND SAR MULTI-TEMPORAL SEASONAL DATA: A CASE STUDY IN LOMBARDY REGION, ITALY
    Fontanelli, G.
    Crema, A.
    Azar, R.
    Stroppiana, D.
    Villa, P.
    Boschetti, M.
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1489 - 1492
  • [42] Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data
    Cai, Yaotong
    Li, Xinyu
    Zhang, Meng
    Lin, Hui
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 92
  • [43] Flood Mapping Using Multi-temporal Sentinel-1 SAR Images: A Case Study-Inaouene Watershed from Northeast of Morocco
    Benzougagh, Brahim
    Frison, Pierre-Louis
    Meshram, Sarita Gajbhiye
    Boudad, Larbi
    Dridri, Abdallah
    Sadkaoui, Driss
    Mimich, Khalid
    Khedher, Khaled Mohamed
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2022, 46 (02) : 1481 - 1490
  • [44] Urban Flood Detection with Sentinel-1 Multi-Temporal Synthetic Aperture Radar (SAR) Observations in a Bayesian Framework: A Case Study for Hurricane Matthew
    Lin, Yunung Nina
    Yun, Sang-Ho
    Bhardwaj, Alok
    Hill, Emma M.
    [J]. REMOTE SENSING, 2019, 11 (15)
  • [45] Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and eXtreme deep learning model
    Al-Ruzouq, Rami
    Shanableh, Abdallah
    Jena, Ratiranjan
    Gibril, Mohammed Barakat A.
    Hammouri, Nezar Atalla
    Lamghari, Fouad
    [J]. GEOSCIENCE FRONTIERS, 2024, 15 (03)
  • [46] High-Resolution Flood Monitoring Based on Advanced Statistical Modeling of Sentinel-1 Multi-Temporal Stacks
    Colacicco, Rosa
    Refice, Alberto
    Nutricato, Raffaele
    Bovenga, Fabio
    Caporusso, Giacomo
    D'Addabbo, Annarita
    La Salandra, Marco
    Lovergine, Francesco Paolo
    Nitti, Davide Oscar
    Capolongo, Domenico
    [J]. REMOTE SENSING, 2024, 16 (02)
  • [47] Ground truth mapping with multi-temporal earth observation data in ESA CloudTool box: A case of Kerala flood event occurred in 2018
    Vanama, V. S. K.
    Babu, K. V. S.
    Rao, Y. S.
    [J]. 2020 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2020, : 133 - 136
  • [48] A change detection approach to flood inundation mapping using multi-temporal Sentinel-1 SAR images, the Brahmaputra River, Assam (India): 2015–2020
    Darshil Vekaria
    Shard Chander
    R P Singh
    Sudhanshu Dixit
    [J]. Journal of Earth System Science, 132
  • [49] Multi-temporal RADARSAT-2 polarimetric SAR for maize mapping supported by segmentations from high-resolution optical image
    Shuai, Guanyuan
    Zhang, Jinshui
    Basso, Bruno
    Pan, Yaozhong
    Zhu, Xiufang
    Zhu, Shuang
    Liu, Hongli
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 74 : 1 - 15
  • [50] Fusion of multi-temporal PlanetScope data and very high-resolution aerial imagery for urban tree species mapping
    Neyns, Robbe
    Efthymiadis, Kyriakos
    Libin, Pieter
    Canters, Frank
    [J]. URBAN FORESTRY & URBAN GREENING, 2024, 99