Machine learning unveils composition-property relationships in chalcogenide glasses

被引:15
|
作者
Mastelini, Saulo Martiello [1 ]
Cassar, Daniel R. [2 ,3 ]
Alcobaca, Edesio [1 ]
Botari, Tiago [1 ]
de Carvalho, Andre C. P. L. F. [1 ]
Zanotto, Edgar D. [3 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Ilum Sch Sci, Rua Lauro Vanucci 1020, BR-13087548 Campinas, Brazil
[3] Univ Fed Sao Carlos, Dept Mat Engn, Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Chalcogenide glasses; Machine learning; Property prediction;
D O I
10.1016/j.actamat.2022.118302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to their unique optical and electronic functionalities, chalcogenide glasses are materials of choice for numerous microelectronic and photonic devices. However, to extend the range of compositions and applications, profound knowledge about composition-property relationships is necessary. To this end, we collected a large quantity of composition-property data on chalcogenide glasses from the SciGlass database regarding glass transition temperature (T-g), coefficient of thermal expansion (CTE), and refractive index (n(D)). With these data, we induced predictive models using four machine learning algorithms: Random Forest, K-nearest Neighbors, Neural Network (Multilayer Perceptron), and Classification and Regression Trees. Finally, the induced models were interpreted by computing the SHapley Additive exPlanations (SHAP) values of the chemical features, which revealed the key elements that significantly impacted the tested properties and quantified their impact. For instance, Ge and Ga increase T-g and decrease CTE (two properties that depend on bond strength), whereas Se has the opposite effect. Te, As, Tl, and Sb increase n(D) (which strongly depends on polarizability), whereas S, Ge, and P diminish it. The SHAP interaction analysis indicated two-element pairs that are likely to exhibit the mixed-former effect: arsenic-germanium and sulfur-selenium. Knowledge about the role of each element on the glass properties is precious for semi-empirical compositional development trials or simulation-driven formulations. The induced models can be used to design novel chalcogenide glasses with the required combinations of properties. (c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Predicting composition-property relationships for glass ionomer cements: A multifactor central composite approach to material optimization
    Kiri, Lauren
    Boyd, Daniel
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2015, 46 : 285 - 291
  • [22] Composition-property relationships for an experimental composite nerve guidance conduit: evaluating cytotoxicity and initial tensile strength
    Kehoe, S.
    Zhang, X. F.
    Boyd, D.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (04) : 945 - 959
  • [23] Analyzing the composition-property diagrams of multicomponent liquid mixtures
    L. A. Serafimov
    V. M. Raeva
    Russian Journal of Physical Chemistry A, 2011, 85 : 186 - 193
  • [24] Methotrexate-loaded glass ionomer cements for drug release in the skeleton: An examination of composition-property relationships
    Kiri, Lauren
    Filiaggi, Mark
    Boyd, Daniel
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2016, 30 (06) : 732 - 739
  • [25] OPTIMAL PLANNING OF EXPERIMENTS IN STUDYING COMPOSITION-PROPERTY DIAGRAMMES
    KOMISSAROVA, LN
    CHEMLEVA, LN
    SHATSKII, VM
    GRANOVSK.YV
    POKROVSK.BI
    SPITSYN, VI
    DOKLADY AKADEMII NAUK SSSR, 1970, 191 (03): : 611 - +
  • [26] THE PLOTTING OF NON-SINGULAR COMPOSITION-PROPERTY DIAGRAMS
    DUBROVSKII, SM
    ZHURNAL FIZICHESKOI KHIMII, 1957, 31 (12): : 2613 - 2618
  • [27] DESCRIPTION OF COMPOSITION-PROPERTY DIAGRAMS CHARACTERIZED BY ASYMPTOTIC TENDENCY OF PROPERTY TO LIMITING VALUES
    NIKOLAEVA, LS
    CHEMLEVA, TA
    DOKLADY AKADEMII NAUK SSSR, 1975, 223 (01): : 166 - 168
  • [28] Structure-property and composition-property relationships for poly(ethylene terephthalate) surfaces modified by helium plasma-based ion implantation
    Toth, A.
    Veres, M.
    Kereszturi, K.
    Mohai, M.
    Bertoti, I.
    Szepvoelgyi, J.
    APPLIED SURFACE SCIENCE, 2011, 257 (24) : 10815 - 10820
  • [29] CONSTRUCTION OF SIMPLICIAL-LINEAR MODELS OF COMPOSITION-PROPERTY DIAGRAMS
    SOBOLEV, NN
    CHEMLEVA, TA
    INDUSTRIAL LABORATORY, 1976, 42 (01): : 103 - 108
  • [30] Composition-property relationships of BP-1 lunar regolith simulant geopolymers for in-situ resource utilization
    Egnaczyk, Thaddeus M.
    Hartt, V. William H.
    Mills, Jennifer N.
    Wagner, Norman J.
    ADVANCES IN SPACE RESEARCH, 2024, 73 (01) : 885 - 917