Route choice on transit networks with online information at stops

被引:67
|
作者
Gentile, G [1 ]
Nguyen, S
Pallottino, S
机构
[1] Univ Pisa, Dipartimento Informat, I-56100 Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento Idraul Trasporti & Strade, I-00184 Rome, Italy
[3] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada
关键词
transit assignment; route choice with online information; networks with common transit lines; boarding probabilities at transit stops;
D O I
10.1287/trsc.1040.0109
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Passengers on a transit network with common lines are often faced with the problem of choosing between either to board the arriving bus or to wait for a faster one. Many assignment models are based on the classical assumption that at a given stop passengers board the first arriving carrier of a certain subset of the available lines, often referred to as the attractive set. In this case, it has been shown that, if the headway distributions are exponential, then an optimal subset of lines minimizing the passenger travel time can be easily determined. However, when online information on future arrivals of buses are posted at the stop, it is unlikely that the above classical assumption holds. In this case, passengers may choose to board a line that offers the best combination of displayed waiting time and expected travel time to their destination once boarded. In this paper, we propose a general framework for determining the probability of boarding each line available at a stop when online information on bus waiting times is provided to passengers. We will also show that the classical model without online information may be interpreted as a particular instance of the proposed framework, this way achieving an extension to general headway distributions. The impact of the availability of information regarding bus arrivals and that of the regularity of transit lines on the network loads, as well as on the passenger travel times, will be illustrated with small numerical examples.
引用
收藏
页码:289 / 297
页数:9
相关论文
共 50 条
  • [21] Model of Passenger Route Choice in the Urban Rail Transit Network
    Qiao Ke
    Zhao Peng
    Qin Zhi-peng
    PROCEEDINGS OF 2ND CONFERENCE ON LOGISTICS, INFORMATICS AND SERVICE SCIENCE (LISS 2012), VOLS 1 AND 2, 2013,
  • [22] Route choice approach on transit travel based on Vague set
    Tan, Man-Chun
    Li, Dan-Dan
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2008, 21 (03): : 86 - 90
  • [23] TRANSIT VEHICLE FLEET INFORMATION AND ONLINE MANAGEMENT
    IRWIN, NA
    CATTON, FD
    GREEN, LES
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1980, 29 (02) : 230 - 234
  • [24] Optimal transit routing with partial online information
    Chen, Peng
    Nie, Yu
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2015, 72 : 40 - 58
  • [25] THE INFLUENCE OF ROUTE GUIDANCE ADVICE ON ROUTE CHOICE IN URBAN NETWORKS
    BONSALL, P
    TRANSPORTATION, 1992, 19 (01) : 1 - 23
  • [26] Route based equilibrium assignment in congested transit networks
    Larrain, Homero
    Suman, Hemant K.
    Carlos Munoz, Juan
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 127 (127)
  • [27] Route choice behavior model with guidance information
    Gao, Feng
    Wang, Mingzhe
    Journal of Transportation Systems Engineering and Information Technology, 2010, 10 (06) : 64 - 69
  • [28] Refined choice set generation and the investigation of multi-criteria transit route choice behavior
    Tomhave, Benjamin J.
    Khani, Alireza
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2022, 155 : 484 - 500
  • [29] Perception of overlap in multi-modal urban transit route choice
    Dixit, Malvika
    Cats, Oded
    Brands, Ties
    van Oort, Niels
    Hoogendoorn, Serge
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2023, 19 (02)
  • [30] An adaptive route choice model for integrated fixed and flexible transit systems
    Leffler, David
    Burghout, Wilco
    Cats, Oded
    Jenelius, Erik
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2024, 12 (01)