3D-printed porous Ti6Al4V alloys with silver coating combine osteocompatibility and antimicrobial properties

被引:9
|
作者
Diez-Escudero, Anna [1 ]
Andersson, Brittmarie [1 ]
Carlsson, Elin [1 ]
Recker, Benjamin [2 ]
Link, Helmut [2 ]
Jarhult, Josef D. [3 ]
Hailer, Nils P. [1 ]
机构
[1] Uppsala Univ, Dept Surg Sci Orthopaed, Ortholab, S-75185 Uppsala, Sweden
[2] Waldemar Link GmbH Co KG, D-22339 Hamburg, Germany
[3] Uppsala Univ, Dept Med Sci, Zoonosis Sci Ctr, S-75237 Uppsala, Sweden
来源
BIOMATERIALS ADVANCES | 2022年 / 133卷
基金
瑞典研究理事会;
关键词
Porous metals; Additive manufacturing; Silver; Antimicrobial; Osteogenesis; JOINT INFECTION; PORE-SIZE; TITANIUM; NANOPARTICLES; IMPLANTS; SURFACES; SCAFFOLDS; BEHAVIOR; POROSITY; DESIGN;
D O I
10.1016/j.msec.2021.112629
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Additive manufacturing allows for the production of porous metallic implants for use in orthopaedics, providing excellent mechanical stability and osseointegration. However, the increased surface area of such porous implants also renders them susceptible to bacterial colonization. In this work, two trabecular porous Ti6Al4V alloys produced by electron beam melting were investigated for their osteocompatibility and antimicrobial effects, comparing samples with a silver-coated surface to uncoated samples. Dense grit-blasted Ti samples were used for comparison. The porous samples had pore sizes of 500-600 mu m and 5 to 10 mu m surface roughness, the silver-coated samples contained 7 at.% Ag, resulting in a cumulative Ag release of 3.5 ppm up to 28 days. Silver reduced the adhesion of Staphylococcus aureus to porous samples and inhibited 72 h biofilm formation by Staphylococcus epidermidis but not that of S. aureus. Primary human osteoblast adhesion, proliferation and differentiation were not impaired in the presence of silver, and expression of osteogenic genes as well as production of mineralized matrix were similar on silver-coated and uncoated samples. Our findings indicate that silver coating of porous titanium implants can achieve antimicrobial effects without compromising osteocompatibility, but higher silver contents may be needed to yield a sustained protection against fast-growing bacteria.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Quercetin-Coating Promotes Osteogenic Differentiation, Osseointegration and Anti-Inflammatory Properties of Nano-Topographic Modificated 3D-Printed Ti6Al4V Implant
    Liu, Nian
    Wang, Hui
    Fu, Zeyu
    Zhang, Chuxi
    Hui, Wenyu
    Wu, Jinyang
    Zhang, Yong
    Zhang, Shilei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [42] Surface treatment of 3D printed porous Ti6Al4V implants by ultraviolet photofunctionalization for improved osseointegration
    Yin, Chuan
    Zhang, Teng
    Wei, Qingguang
    Cai, Hong
    Cheng, Yan
    Tian, Yun
    Leng, Huijie
    Wang, Caimei
    Feng, Shiqing
    Liu, Zhongjun
    BIOACTIVE MATERIALS, 2022, 7 : 26 - 38
  • [43] 3D laser-printed porous Ti6Al4V dental implants for compromised bone support
    Tu, Che Chang
    Tsai, Pei-, I
    Chen, San-Yuan
    Kuo, Mark Yen-Ping
    Sun, Jui-Sheng
    Chang, Jenny Zwei-Chieng
    JOURNAL OF THE FORMOSAN MEDICAL ASSOCIATION, 2020, 119 (01) : 420 - 429
  • [44] Development and evaluation of hydroxytite-based anti-microbial surface coatings on polydopamine-treated porous 3D-printed Ti6Al4V alloys for overall biofunctionality
    Singh, Gurmohan
    Saini, Abhineet
    Pabla, B. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2022,
  • [45] Cancellous bone from porous Ti6Al4V by multiple coating technique
    Li, JP
    Li, SH
    Van Blitterswijk, CA
    De Groot, K
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2006, 17 (02) : 179 - 185
  • [46] Mechanical properties analysis of different porous structures of Ti6Al4V printed by selective laser melting
    Li, Bijian
    Xu, Ying
    Cai, Yanqing
    Chang, Jincai
    Chen, Xinggang
    JOURNAL OF MATERIALS RESEARCH, 2025, : 418 - 428
  • [47] Correction to: Mechanical properties of AM Ti6Al4V porous scaffolds with various cell structuresCorrection to: Mechanical properties of AM Ti6Al4V porous scaffoldsH.-D. Zheng et al.
    Hua-De Zheng
    Li-Li Liu
    Chun-Lin Deng
    Zhi-Feng Shi
    Cheng-Yun Ning
    Rare Metals, 2025, 44 (1) : 664 - 664
  • [48] 3D-Printed Ti6Al4V Scaffolds with Graded Triply Periodic Minimal Surface Structure for Bone Tissue Engineering
    Liao, Bo
    Xia, Ru Feng
    Li, Wei
    Lu, Dong
    Jin, Zhong Min
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (07) : 4993 - 5004
  • [49] 3D-Printed Ti6Al4V Scaffolds with Graded Triply Periodic Minimal Surface Structure for Bone Tissue Engineering
    Bo Liao
    Ru Feng Xia
    Wei Li
    Dong Lu
    Zhong Min Jin
    Journal of Materials Engineering and Performance, 2021, 30 : 4993 - 5004
  • [50] 3D Finite Element Modeling of the Machining of Ti6Al4V Alloys
    Yang, Jihong
    Sun, Shoujin
    Brandt, Milan
    Yan, Wenyi
    MANUFACTURING PROCESS TECHNOLOGY, PTS 1-5, 2011, 189-193 : 1926 - +