3D-printed porous Ti6Al4V alloys with silver coating combine osteocompatibility and antimicrobial properties

被引:9
|
作者
Diez-Escudero, Anna [1 ]
Andersson, Brittmarie [1 ]
Carlsson, Elin [1 ]
Recker, Benjamin [2 ]
Link, Helmut [2 ]
Jarhult, Josef D. [3 ]
Hailer, Nils P. [1 ]
机构
[1] Uppsala Univ, Dept Surg Sci Orthopaed, Ortholab, S-75185 Uppsala, Sweden
[2] Waldemar Link GmbH Co KG, D-22339 Hamburg, Germany
[3] Uppsala Univ, Dept Med Sci, Zoonosis Sci Ctr, S-75237 Uppsala, Sweden
来源
BIOMATERIALS ADVANCES | 2022年 / 133卷
基金
瑞典研究理事会;
关键词
Porous metals; Additive manufacturing; Silver; Antimicrobial; Osteogenesis; JOINT INFECTION; PORE-SIZE; TITANIUM; NANOPARTICLES; IMPLANTS; SURFACES; SCAFFOLDS; BEHAVIOR; POROSITY; DESIGN;
D O I
10.1016/j.msec.2021.112629
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Additive manufacturing allows for the production of porous metallic implants for use in orthopaedics, providing excellent mechanical stability and osseointegration. However, the increased surface area of such porous implants also renders them susceptible to bacterial colonization. In this work, two trabecular porous Ti6Al4V alloys produced by electron beam melting were investigated for their osteocompatibility and antimicrobial effects, comparing samples with a silver-coated surface to uncoated samples. Dense grit-blasted Ti samples were used for comparison. The porous samples had pore sizes of 500-600 mu m and 5 to 10 mu m surface roughness, the silver-coated samples contained 7 at.% Ag, resulting in a cumulative Ag release of 3.5 ppm up to 28 days. Silver reduced the adhesion of Staphylococcus aureus to porous samples and inhibited 72 h biofilm formation by Staphylococcus epidermidis but not that of S. aureus. Primary human osteoblast adhesion, proliferation and differentiation were not impaired in the presence of silver, and expression of osteogenic genes as well as production of mineralized matrix were similar on silver-coated and uncoated samples. Our findings indicate that silver coating of porous titanium implants can achieve antimicrobial effects without compromising osteocompatibility, but higher silver contents may be needed to yield a sustained protection against fast-growing bacteria.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Effect of lattice type on biomechanical and osseointegration properties of 3D-printed porous Ti6Al4V scaffolds
    Liu, Jiantao
    Wang, Kao
    Wang, Runqing
    Yin, Zhanhai
    Zhou, Xiaoling
    Xu, Aofei
    Zhang, Xiwei
    Li, Yiming
    Wang, Ruiyan
    Zhang, Shuyuan
    Cheng, Jun
    Bian, Weiguo
    Li, Jia
    Ren, Zhiwei
    Sun, Mengyuan
    Yang, Yin
    Wang, Dezhi
    Ren, Jing
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (02) : 207 - 227
  • [2] Facile Fabrication of 3D-Printed Porous Ti6Al4V Scaffolds with a Sr-CaP Coating for Bone Regeneration
    Su, Shenghui
    Chen, Weidong
    Zheng, Minghui
    Lu, Guozan
    Tang, Wei
    Huang, Haihong
    Qu, Dongbin
    ACS OMEGA, 2022, 7 (10): : 8391 - 8402
  • [3] Research on the Dynamic Compressive Deformation Behavior of 3D-Printed Ti6Al4V
    Pu, Bo
    Li, Wenbin
    Zhang, Qing
    Zheng, Yu
    Wang, Xiaoming
    METALS, 2021, 11 (08)
  • [4] 3D-printed Ti6Al4V femoral component of knee: Improvements in wear and biological properties by AIP TiN and TiCrN coating
    Ni, JunJie
    Liu, Fan
    Yang, Gaolin
    Lee, Gun-Hwan
    Chung, Sung-Min
    Lee, In-Seop
    Chen, Cen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 2322 - 2332
  • [5] 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review
    Gu, Yifei
    Sun, Yi
    Shujaat, Sohaib
    Braem, Annabel
    Politis, Constantinus
    Jacobs, Reinhilde
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2022, 17 (01)
  • [6] 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review
    Yifei Gu
    Yi Sun
    Sohaib Shujaat
    Annabel Braem
    Constantinus Politis
    Reinhilde Jacobs
    Journal of Orthopaedic Surgery and Research, 17
  • [7] Wear resistance and antibacterial properties of 3D-printed Ti6Al4V alloy after gas nitriding
    Matijosius, Tadas
    Pohrelyuk, Iryna
    Lavrys, Serhii
    Staisiunas, Laurynas
    Selskiene, Ausra
    Sticinskait, Aiste
    Rageliene, Lina
    Smailys, Alfredas
    Andrius, Albinas
    Padgurskas, Juozas
    TRIBOLOGY INTERNATIONAL, 2024, 197
  • [8] Multilayered porous hydroxyapatite coating on Ti6Al4V implant with enhanced drug delivery and antimicrobial properties
    Rajesh, Kanike
    Ghosh, Souvik
    Islam, Aminul
    Rangaswamy, Manoj Kumar
    Haldar, Swati
    Roy, Partha
    Keshri, Anup Kumar
    Lahiri, Debrupa
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 70
  • [9] A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation
    Wang, Wei
    Xiong, Yinze
    Zhao, Renliang
    Li, Xiang
    Jia, Weitao
    JOURNAL OF NANOBIOTECHNOLOGY, 2022, 20 (01)
  • [10] A pH-neutral bioactive glass coated 3D-printed porous Ti6Al4V scaffold with enhanced osseointegration
    Wang, Xinguang
    Guo, Qirui
    He, Yizhen
    Geng, Xiao
    Wang, Cheng
    Li, Yang
    Li, Zijian
    Wang, Caimei
    Qiu, Dong
    Tian, Hua
    JOURNAL OF MATERIALS CHEMISTRY B, 2023, 11 (06) : 1203 - 1212