Finite element computation of discrete configurational forces in crystal plasticity

被引:8
|
作者
Kuhn, Charlotte [1 ]
Lohkamp, Richard [2 ]
Schneider, Frank [3 ]
Aurich, Jan C. [3 ]
Mueller, Ralf [2 ]
机构
[1] Univ Kaiserslautern, D-67653 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Inst Appl Mech, D-67653 Kaiserslautern, Germany
[3] Univ Kaiserslautern, FBK Inst Mfg Technol & Prod Syst, D-67653 Kaiserslautern, Germany
关键词
Configurational forces; Crystal plasticity; Finite element method; Subelements; HYPERELASTOSTATIC FRACTURE-MECHANICS; BRITTLE CRACK-PROPAGATION; THERMODYNAMICS; FRAMEWORK;
D O I
10.1016/j.ijsolstr.2014.12.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this contribution the theory of configurational forces is applied to a viscoplastic material model with plastic slip in the basal and prismatic slip systems of an hcp crystal structure. Thereby the derivation of the configurational force balance is related to a translational invariance of the underlying energetics. The computation of configurational forces in this dissipative media requires the computation of gradients of the internal variables. In the context of the finite element method, this usually requires a projection of integration point data to the global mesh nodes. Alternatively, the gradients can be computed using a rather unknown subelement technique. The numerical accuracy of the different methods is qualitatively and quantitatively analyzed from a configurational force point of view. In a final example, the influence of the crystal orientation and plastic slip in multiple slip systems on the loading of a mode I crack is discussed with the help of the computed configurational forces. Furthermore, the influence of hardening is considered in this scenario. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 77
页数:16
相关论文
共 50 条
  • [41] Quantitative analysis of upset texture by crystal plasticity: finite element analysis
    Lee, M. G.
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2008, 33 (04): : 361 - 375
  • [42] Crystal plasticity finite element simulation of crack growth in single crystals
    Li, J.
    Proudhon, H.
    Roos, A.
    Chiaruttini, V.
    Forest, S.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 94 : 191 - 197
  • [43] Comparison of the implicit and explicit finite element methods using crystal plasticity
    Harewood, F. J.
    McHugh, P. E.
    COMPUTATIONAL MATERIALS SCIENCE, 2007, 39 (02) : 481 - 494
  • [44] Consistent crystal plasticity kinematics and linearization for the implicit finite element method
    Messner, Mark
    Beaudoin, Armand
    Dodds, Robert
    ENGINEERING COMPUTATIONS, 2015, 32 (06) : 1526 - 1548
  • [45] A deep learning-based crystal plasticity finite element model
    Mao, Yuwei
    Keshavarz, Shahriyar
    Kilic, Muhammed Nur Talha
    Wang, Kewei
    Li, Youjia
    Reid, Andrew C. E.
    Liao, Wei-keng
    Choudhary, Alok
    Agrawal, Ankit
    SCRIPTA MATERIALIA, 2025, 254
  • [46] Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons
    Delannay, Laurent
    Jacques, Pascal J.
    Kalidindi, Surya R.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2006, 22 (10) : 1879 - 1898
  • [47] Crystal plasticity finite element modelling of coarse-grained α-uranium
    Grilli, Nicolo
    Cocks, Alan C. F.
    Tarleton, Edmund
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 171
  • [48] Modelling deformation microstructure with the crystal plasticity finite-element method
    Bate, P
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1756): : 1589 - 1601
  • [49] Crystal plasticity finite element analysis of gradient nanostructured TWIP steel
    Lu, Xiaochong
    Zhao, Jianfeng
    Wang, Zhangwei
    Gan, Bin
    Zhao, Junwen
    Kang, Guozheng
    Zhang, Xu
    INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 130
  • [50] Prediction of earing in IF steels by using crystal plasticity finite element method
    Choi, SH
    Lee, BY
    ICOTOM 14: TEXTURES OF MATERIALS, PTS 1AND 2, 2005, 495-497 : 1237 - 1242