Instabilities in compressible fluids

被引:0
|
作者
Bormann, AS
机构
关键词
D O I
10.1142/9789812777331_0012
中图分类号
O414.1 [热力学];
学科分类号
摘要
Linear stability analysis in combination with the Boussinesq approximation is usually used in order to determine the critical conditions for the onset of convection for the Rayleigh-Benard problem. In this way a non-dimensional number, the Rayleigh number, is obtained, which reflects whether the fluid is at rest (stability) or in motion (instability). From a thermodynamic point of view the Boussinesq approximation has a shortcoming that contradicts thermodynamic stability. Therefore a linear stability analysis for the compressible Navier-Stokes-Fourier equations has been carried out numerically for rigid-rigid, rigid-free and free-free boundaries. The results show that the critical value of the Rayleigh number is not constant anymore as in the Boussinesq case, but that it depends on the thickness of the fluid layer.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 50 条
  • [41] Hydrodynamic instabilities in rotating fluids
    Buehler K.
    Journal of Thermal Science, 2000, 9 (2) : 103 - 108
  • [42] Response to "Comment on 'Compressible Rayleigh-Taylor instabilities in supernova remnants'" [Phys. Fluids 17, 069101 (2005)]
    Ribeyre, X
    Tikhonchuk, VT
    Bouquet, S
    PHYSICS OF FLUIDS, 2005, 17 (06) : 1
  • [43] RADIATIVE AND RECONNECTION INSTABILITIES - COMPRESSIBLE AND VISCOUS EFFECTS
    TACHI, T
    STEINOLFSON, RS
    VANHOVEN, G
    SOLAR PHYSICS, 1985, 95 (01) : 119 - 140
  • [44] Instabilities of compressible fluid flow over a membrane
    Dharmavaram, S.
    Dasgupta, A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2007, 221 (02) : 227 - 234
  • [45] Shear instabilities in a fully compressible polytropic atmosphere
    Witzke, V.
    Silvers, L. J.
    Favier, B.
    ASTRONOMY & ASTROPHYSICS, 2015, 577
  • [46] GRAVITATIONAL INSTABILITIES IN A COMPRESSIBLE COLLISIONAL PLASMA LAYER
    COPPI, B
    ANNALS OF PHYSICS, 1964, 30 (01) : 178 - 200
  • [47] SECONDARY INSTABILITIES IN COMPRESSIBLE BOUNDARY-LAYERS
    NG, LL
    ERLEBACHER, G
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (04): : 710 - 726
  • [48] Topology optimization of slightly compressible fluids
    Evgrafov, A
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (01): : 46 - 62
  • [49] Lift force in odd compressible fluids
    Lier, Ruben
    Duclut, Charlie
    Bo, Stefano
    Armas, Jay
    Juelicher, Frank
    Surowka, Piotr
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [50] Dynamic phase boundaries for compressible fluids
    Lu, T.
    Xu, Z. L.
    Samulyak, R.
    Glimm, J.
    Ji, X. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 895 - 915