Regularity of the minimiser of one-dimensional interaction energies

被引:6
|
作者
Kimura, M. [1 ]
van Meurs, P. [1 ]
机构
[1] Kanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa, Japan
关键词
Interaction energy; energy minimisation; regularity of the minimiser; singular integral equation; EQUILIBRIUM MEASURE; INTEGRAL-EQUATIONS; OBSTACLE PROBLEM; BEHAVIOR;
D O I
10.1051/cocv/2019043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider both the minimisation of a class of nonlocal interaction energies over non-negative measures with unit mass and a class of singular integral equations of the first kind of Fredholm type. Our setting covers applications to dislocation pile-ups, contact problems, fracture mechanics and random matrix theory. Our main result shows that both the minimisation problems and the related singular integral equations have the same unique solution, which provides new regularity results on the minimiser of the energy and new positivity results on the solutions to singular integral equations.
引用
下载
收藏
页数:43
相关论文
共 50 条
  • [21] REGULARITY OF SOLUTIONS TO ONE-DIMENSIONAL AND MULTI-DIMENSIONAL PROBLEMS IN THE CALCULUS OF VARIATIONS
    Clarke, F. H.
    GEOMETRIC CONTROL AND NONSMOOTH ANALYSIS, 2008, 76 : 151 - 163
  • [22] Free energies in one-dimensional models of magnetic transitions with hysteresis
    Berti, A.
    Giorgi, C.
    Vuk, E.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (04): : 371 - 394
  • [23] Determination of bound state energies for a one-dimensional potential field
    Sedrakian, DM
    Khachatrian, AZ
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 19 (03): : 309 - 315
  • [24] Charge and spin addition energies of a one-dimensional quantum dot
    Kleimann, T
    Sassetti, M
    Kramer, B
    Yacoby, A
    PHYSICAL REVIEW B, 2000, 62 (12) : 8144 - 8153
  • [25] Interaction quenches in the one-dimensional Bose gas
    Kormos, Marton
    Shashi, Aditya
    Chou, Yang-Zhi
    Caux, Jean-Sebastien
    Imambekov, Adilet
    PHYSICAL REVIEW B, 2013, 88 (20):
  • [26] Interaction effects in one-dimensional semiconductor systems
    Tokura, Y
    Odintsov, AA
    Tarucha, S
    LOW-DIMENSIONAL SYSTEMS: INTERACTIONS AND TRANSPORT PROPERTIES, 2000, 544 : 79 - 95
  • [27] LOCALIZATION AND INTERACTION IN ONE-DIMENSIONAL QUANTUM FLUIDS
    GIAMARCHI, T
    SCHULZ, HJ
    EUROPHYSICS LETTERS, 1987, 3 (12): : 1287 - 1293
  • [28] INTERACTION OF EXCITATION WAVES IN A ONE-DIMENSIONAL CRYSTAL
    MERRIFIELD, RE
    JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02): : 522 - 525
  • [29] ORBITAL INTERACTION IN ONE-DIMENSIONAL MAGNETIC COMPOUNDS
    GIRERD, JJ
    CHARLOT, MF
    KAHN, O
    MOLECULAR PHYSICS, 1977, 34 (04) : 1063 - 1076
  • [30] ONE-DIMENSIONAL MODEL FOR DEMONSTRATING HYDROPHOBIC INTERACTION
    ELKOSHI, Z
    BENNAIM, A
    JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (03): : 1552 - 1559