Nonlinear Model Predictive Control of Reentry Vehicles Based on Takagi-Sugeno Fuzzy Models

被引:2
|
作者
Margolis, Benjamin W. L. [1 ]
Ayoubi, Mohammad A. [2 ]
Joshi, Sanjay S. [1 ]
机构
[1] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA
[2] Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 95053 USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2020年 / 67卷 / 01期
基金
美国国家科学基金会;
关键词
Model predictive control; Takagi-Sugeno fuzzy model; Tracking control; ENTRY GUIDANCE; ATMOSPHERIC ENTRY; MARS; TRACKING; OPTIMIZATION;
D O I
10.1007/s40295-019-00191-2
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, we apply a discrete-time Takagi-Sugeno Fuzzy Model (TSFM) based model predictive controller (MPC) to a Martian aerocapture vehicle following an arbitrary trajectory. We compare two baseline controllers: a continuous-time TSFM based parallel distributed controller (PDC) and a finite-horizon linear quadratic regulator (LQR). We evaluate the change in velocity (Delta V) required to bring the orbit of the controlled exit conditions to the orbit of the reference trajectory exit conditions over a range of initial condition errors and perturbations to atmospheric density. The LQR controller was least robust but performed best in a smaller range of perturbations. The PDC controller was most robust but performed the worst. The MPC based controllers demonstrate a balance of robustness and performance.
引用
收藏
页码:113 / 136
页数:24
相关论文
共 50 条
  • [31] Shape-independent model predictive control for Takagi-Sugeno fuzzy systems
    Arino, Carlos
    Querol, Andres
    Sala, Antonio
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 65 : 493 - 505
  • [32] Adaptive Takagi-Sugeno fuzzy model and model predictive control of pneumatic artificial muscles
    XIA XiuZe
    CHENG Long
    [J]. Science China(Technological Sciences), 2021, (10) : 2272 - 2280
  • [33] Adaptive Takagi-Sugeno fuzzy model and model predictive control of pneumatic artificial muscles
    XiuZe Xia
    Long Cheng
    [J]. Science China Technological Sciences, 2021, 64 : 2272 - 2280
  • [34] Predictive control of solid oxide fuel cell based on an improved Takagi-Sugeno fuzzy model
    Yang, Jie
    Li, Xi
    Mou, Hong-Gang
    Jian, Li
    [J]. JOURNAL OF POWER SOURCES, 2009, 193 (02) : 699 - 705
  • [35] Adaptive Takagi-Sugeno fuzzy model and model predictive control of pneumatic artificial muscles
    XIA XiuZe
    CHENG Long
    [J]. Science China Technological Sciences, 2021, 64 (10) : 2272 - 2280
  • [36] Adaptive Takagi-Sugeno fuzzy model and model predictive control of pneumatic artificial muscles
    Xia XiuZe
    Cheng Long
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (10) : 2272 - 2280
  • [37] Evolving Takagi-Sugeno fuzzy model based on switching to neighboring models
    Kalhor, Ahmad
    Araabi, Babak N.
    Lucas, Caro
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (02) : 939 - 946
  • [38] Development of a Predictive Control Based on Takagi-Sugeno Model Applied in a Nonlinear System of Industrial Refrigeration
    Franco, I. C.
    Schmitz, J. E.
    Costa, T. V.
    Fileti, A. M. F.
    Silva, F. V.
    [J]. CHEMICAL ENGINEERING COMMUNICATIONS, 2017, 204 (01) : 39 - 54
  • [39] Mimo predictive control by multiple-step linearization of Takagi-Sugeno fuzzy models
    Mollov, S
    Babuska, R
    Roubos, JA
    Verbruggen, HB
    [J]. ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL 1998, 1999, : 197 - 202
  • [40] Nonlinear model reference adaptive control using Takagi-Sugeno fuzzy systems
    Golea, Noureddine
    Golea, Amar
    Kadjoudj, Mohamed
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2006, 17 (01) : 47 - 57