A combination of membrane relaxation and shear stress significantly improve the flux of gravity-driven membrane system

被引:57
|
作者
Shi, Danting [1 ]
Liu, Yang [1 ]
Fu, Wenwen [1 ]
Li, Jiangyun [1 ]
Fang, Zheng [1 ]
Shao, Senlin [1 ]
机构
[1] Wuhan Univ, Sch Civil Engn, Wuhan, Peoples R China
基金
中国博士后科学基金;
关键词
GDM system; Membrane relaxation; Shear stress; Biofouling layer; Stable flux; OPTICAL COHERENCE TOMOGRAPHY; ULTRAFILTRATION MEMBRANES; FOULING LAYER; PERMEATE FLUX; PHYSICAL STRUCTURE; WATER TREATMENT; DEAD-END; FILTRATION; BIOFILMS; PERFORMANCE;
D O I
10.1016/j.watres.2020.115694
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gravity-driven membrane (GDM) filtration system is a promising process for decentralized drinking water treatment. During the operation, membrane relaxation and shear stress could be simply achieved by intermittent filtration and water disturbance (created by occasionally shaking membrane model or stirring water in membrane tank), respectively. To better understand the impact of membrane relaxation and shear stress on the biofouling layer and stable flux in GDM system, action of daily 60-min intermission, daily flushing (cross-flow velocity = 10 cm s(-1), 1 min), and the combination of the two (flushed right after the 60-min intermission) were compared. The results showed that membrane relaxation and shear stress lonely was ineffective in improving the stable flux, while their combination enhanced the stable flux by 70%. A more open and spatially heterogeneous biofouling layer with a low extracellular polymeric substance (EPS) content and a high microbial activity was formed under the combination of membrane relaxation and shear stress. In-situ optical coherence tomography (OCT) observation revealed that, during intermission, the absence of pushing force by water flow induced a reversible expansion of biofouling layer, and the biofouling layer restored to its initial state soon after resuming filtration. Shear stress caused abrasion and erosion on the biofouling surface, but it exerted little effect on the interior of biofouling layer. Under the combination, however, both the surface and interior of biofouling layer were disturbed because of 1) the water vortexes caused by rough biofouling layer surface, and 2) the porous structure after 60-min intermission. This disturbance, in turn, helped the biofouling layer maintain its roughness and porosity, thereby improving the stable flux of GDM system. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Gravity-driven membrane integrated with membrane distillation for efficient shale gas produced water treatment
    Ji, Zhengxuan
    Wang, Jiaxuan
    Yan, Zhongsen
    Liu, Caihong
    Liu, Zhe
    Chang, Haiqing
    Qu, Fangshu
    Liang, Heng
    WATER RESEARCH, 2024, 266
  • [22] Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: Linking biofouling layer morphology with flux stabilization
    Akhondi, Ebrahim
    Wu, Bing
    Sun, Shuyang
    Marxer, Brigit
    Lim, Weikang
    Gu, Jun
    Liu, Linbo
    Burkhardt, Michael
    McDougald, Diane
    Pronk, Wouter
    Fane, Anthony G.
    WATER RESEARCH, 2015, 70 : 158 - 173
  • [23] Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization
    Wang, Yiran
    Fortunato, Luca
    Jeong, Sanghyun
    Leiknes, TorOve
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 184 : 26 - 33
  • [24] Performance and mechanism of gravity-driven membrane bioreactor for rural wastewater treatment
    Ma, Zixin
    Wen, Jingbo
    Jiang, Linqiao
    Ke, Zheng
    Luo, Jiaoying
    Huang, Tianyin
    Liang, Heng
    Li, Guibai
    Tang, Xiaobin
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56 (06): : 16 - 24
  • [25] Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (GDM) filtration system
    Shao, Senlin
    Feng, Yijing
    Yu, Huarong
    Li, Jiangyun
    Li, Guibai
    Liang, Heng
    WATER RESEARCH, 2017, 108 : 240 - 249
  • [26] Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment
    Wu, Bing
    Hochstrasser, Florian
    Akhondi, Ebrahim
    Ambauen, Noemi
    Tschirren, Lukas
    Burkhardt, Michael
    Fane, Anthony G.
    Pronk, Wouter
    WATER RESEARCH, 2016, 93 : 133 - 140
  • [27] Gravity-driven membrane filtration treating manganese-contaminated surface water: Flux stabilization and removal performance
    Tang, Xiaobin
    Xie, Binghan
    Chen, Rui
    Wang, Jinlong
    Huang, Kaijie
    Zhu, Xuewu
    Li, Guibai
    Liang, Heng
    CHEMICAL ENGINEERING JOURNAL, 2020, 397
  • [28] Improved stable flux and antifouling properties of a PSF gravity-driven membrane by blending with hydrophilic functionalized mesoporous silicon
    Wang, Haidong
    Wang, Haoyu
    Cheng, Li
    Lu, Xiaofei
    Li, Rundong
    Ma, Jun
    Ma, Fang
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2024, 10 (02) : 510 - 523
  • [29] Effects of GAC layer on the performance of gravity-driven membrane filtration (GDM) system for rainwater recycling
    Ding, An
    Wang, Jinlong
    Lin, Dachao
    Zeng, Rong
    Yu, Shengping
    Gan, Zhendong
    Ren, Nanqi
    Li, Guibai
    Liang, Heng
    CHEMOSPHERE, 2018, 191 : 253 - 261
  • [30] Polyvinylidene fluoride gravity-driven membranes modification and membrane fouling: A review
    Subasinghe, Pasan
    Said, Khairul Anwar Mohamad
    Rahman, Md Rezaur
    Kuok, King Kuok
    GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2024, 26