Some Mathematical Aspects of Quantum Zeno Effect

被引:2
|
作者
Arai, Asao [1 ]
Fuda, Toru [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
基金
日本学术振兴会;
关键词
quantum Zeno effect; survival probability; transition probability; PARADOX;
D O I
10.1007/s11005-011-0539-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mathematical investigations on quantum Zeno effect (QZE) are presented, including the following aspects: (i) QZE by frequent measurements made by an arbitrary partition of a time interval [0, t] (t > 0); (ii) non-occurrence of QZE for vector states which are not in the domain of the Hamiltonian of the quantum system under consideration; and (iii) asymptotic behavior of the survival probability characterizing QZE in the number N of divisions of [0, t]; and (iv) QZE along a curve in the Hilbert space of state vectors.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 50 条
  • [21] QUANTUM ZENO EFFECT - COMMENT
    BALLENTINE, LE
    PHYSICAL REVIEW A, 1991, 43 (09): : 5165 - 5167
  • [22] THE GEOMETRY OF THE QUANTUM ZENO EFFECT
    Facchi, Paolo
    Pascazio, Saverio
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (02)
  • [23] Quantum Zeno effect at 45
    Georgescu, Iulia
    NATURE REVIEWS PHYSICS, 2022, 4 (05) : 289 - 289
  • [24] COMMENTS ON THE QUANTUM ZENO EFFECT
    FEARN, H
    LAMB, WE
    QUANTUM AND SEMICLASSICAL OPTICS, 1995, 7 (03): : 211 - 214
  • [25] Quantum Zeno effect generalized
    Moebus, Tim
    Wolf, Michael M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
  • [26] DYNAMICAL QUANTUM ZENO EFFECT
    PASCAZIO, S
    NAMIKI, M
    PHYSICAL REVIEW A, 1994, 50 (06): : 4582 - 4592
  • [27] Understanding the quantum Zeno effect
    Nakazato, H
    Namiki, M
    Pascazio, S
    Rauch, H
    PHYSICS LETTERS A, 1996, 217 (4-5) : 203 - 208
  • [28] Quantum Zeno effect in quantum chaotic rotators
    Sang Wook Kim
    Chough, Y.-T.
    An, K.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (05): : 521041 - 521045
  • [29] Quantum Zeno Effect in Open Quantum Systems
    Simon Becker
    Nilanjana Datta
    Robert Salzmann
    Annales Henri Poincaré, 2021, 22 : 3795 - 3840
  • [30] Inverse quantum Zeno effect in quantum oscillations
    Panov, AD
    PHYSICS LETTERS A, 2002, 298 (5-6) : 295 - 300