Dispersive estimate for the 1D Schrodinger equation with a steplike potential

被引:6
|
作者
D'Ancona, Piero [1 ]
Selberg, Sigmund [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Steplike potentials; Schrodinger equation; Dispersive estimate; KORTEWEG-DEVRIES EQUATION; L-P-BOUNDEDNESS; INVERSE SCATTERING; WAVE-OPERATORS; LINE;
D O I
10.1016/j.jde.2011.03.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a sharp dispersive estimate vertical bar P(ac)u(t, x)vertical bar <= C vertical bar t vertical bar(-1/2) . vertical bar vertical bar u(0)vertical bar vertical bar L(1(R)) for the one dimensional Schrodinger equation iu(t) - u(xx) + V (x)u + V(0)(x) = 0, where (1 + x(2))V E is an element of L(1) (R) and V(0) is a step function, real valued and constant on the positive and negative real axes. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1603 / 1634
页数:32
相关论文
共 50 条
  • [1] Dispersion for Schrodinger Equation with Periodic Potential in 1D
    Cuccagna, Scipio
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (11) : 2064 - 2095
  • [2] Exact solutions of the 1D Schrodinger equation with the Mathieu potential
    Sun, Guo-Hua
    Chen, Chang-Yuan
    Taud, Hind
    Yanez-Marquez, C.
    Dong, Shi-Hai
    PHYSICS LETTERS A, 2020, 384 (19)
  • [3] On the Schrodinger equation with steplike potentials
    Aktosun, T
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (11) : 5289 - 5305
  • [4] Dispersive estimate for the Schrodinger equation with point interactions
    D'Ancona, P
    Pierfelice, V
    Teta, A
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (03) : 309 - 323
  • [5] EXPLICIT SOLUTION OF THE 1D SCHRODINGER EQUATION
    Gibson, Peter C.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) : 4466 - 4493
  • [6] Controllability of the 1D Schrodinger equation using flatness
    Martin, Philippe
    Rosier, Lionel
    Rouchon, Pierre
    AUTOMATICA, 2018, 91 : 208 - 216
  • [7] QUASI-PERIODIC SOLUTIONS OF 1D NONLINEAR SCHRODINGER EQUATION WITH A MULTIPLICATIVE POTENTIAL
    Ren, Xiufang
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 2191 - 2211
  • [8] Darboux transformation for the Schrodinger equation with steplike potentials
    Aktosun, T
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) : 1619 - 1631
  • [9] On Selection of Standing Wave at Small Energy in the 1D Cubic Schrodinger Equation with a Trapping Potential
    Cuccagna, Scipio
    Maeda, Masaya
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (03) : 1135 - 1186
  • [10] GLOBAL CONTROLLABILITY OF THE 1D SCHRODINGER-POISSON EQUATION
    De Leo, Mariano
    Fernandez de la Vega, Constanza Sanchez
    Rial, Diego
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2013, 54 (01): : 43 - 54