EXPLICIT SOLUTION OF THE 1D SCHRODINGER EQUATION

被引:0
|
作者
Gibson, Peter C. [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
关键词
one-dimensional Schrodinger equation; one-dimensional wave equation; explicit solutions; scattering on the line; INVERSE SPECTRAL THEORY; STURM-LIOUVILLE OPERATORS; SCATTERING;
D O I
10.1137/22M1514441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Evaluation of a product integral with values in the Lie group SU(1,1) yields the explicit solution to the impedance form of the Schro"\dinger equation. Explicit formulas for the transmission coefficient and S-matrix of the classical one-dimensional Schro"\dinger operator with arbitrary compactly supported potential are obtained as a consequence. The formulas involve operator theoretic analogues of the standard hyperbolic functions and provide new tools with which to analyze acoustic and quantum scattering in one dimension.
引用
收藏
页码:4466 / 4493
页数:28
相关论文
共 50 条
  • [1] Solution of the 1D KPZ Equation by Explicit Methods
    Sayfidinov, Okhunjon
    Bognar, Gabriella
    Kovacs, Endre
    SYMMETRY-BASEL, 2022, 14 (04):
  • [2] Solution of the 1D Schrodinger equation in semiconductor heterostructures using the immersed interface method
    Momox, E.
    Zakhleniuk, N.
    Balkan, N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (18) : 6173 - 6180
  • [3] Controllability of the 1D Schrodinger equation using flatness
    Martin, Philippe
    Rosier, Lionel
    Rouchon, Pierre
    AUTOMATICA, 2018, 91 : 208 - 216
  • [4] Dispersion for Schrodinger Equation with Periodic Potential in 1D
    Cuccagna, Scipio
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (11) : 2064 - 2095
  • [5] Explicit breather solution of the nonlinear Schrodinger equation
    Conte, R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 209 (01) : 1357 - 1366
  • [6] GLOBAL CONTROLLABILITY OF THE 1D SCHRODINGER-POISSON EQUATION
    De Leo, Mariano
    Fernandez de la Vega, Constanza Sanchez
    Rial, Diego
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2013, 54 (01): : 43 - 54
  • [7] Dispersive estimate for the 1D Schrodinger equation with a steplike potential
    D'Ancona, Piero
    Selberg, Sigmund
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1603 - 1634
  • [8] Bilinear control of high frequencies for a 1D Schrodinger equation
    Beauchard, K.
    Laurent, C.
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2017, 29 (02)
  • [9] Exact solutions of the 1D Schrodinger equation with the Mathieu potential
    Sun, Guo-Hua
    Chen, Chang-Yuan
    Taud, Hind
    Yanez-Marquez, C.
    Dong, Shi-Hai
    PHYSICS LETTERS A, 2020, 384 (19)
  • [10] Numerical null controllability of the 1D linear Schrodinger equation
    Fernandez-Cara, Enrique
    Santos, Mauricio C.
    SYSTEMS & CONTROL LETTERS, 2014, 73 : 33 - 41