A Machine Learning-based Approach for Failure Prediction at Cell Level based on Wafer Acceptance Test Parameters

被引:4
|
作者
Chen, Xiang [1 ]
Zhao, Yi [1 ]
Lu, Hongliang [1 ]
Shao, Xiaoqiang [1 ]
Chen, Cheng [1 ]
Huang, Yu [1 ]
机构
[1] Huawei Technol Co Ltd, Shenzhen, Peoples R China
关键词
Machine learning; Feature selection; Failure prediction; Wafer Acceptance Test; Diagnosis; Yield;
D O I
10.1109/MDTS52103.2021.9476151
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wafer Acceptance Test (WAT) or commonly known as Process Control Monitoring (PCM) includes numerous testing items that have many important applications, such as yield improvement and production cost control. The prediction of wafer yield based on WAT parameters has been successfully employed to reduce production costs spent on the circuit probing process. However, the relationship between WAT and subsequent diagnosis reports has not been sufficiently explored yet. This paper proposes a learning-based framework for failure prediction at cell level from WAT data, including various techniques for feature selection and handling imbalanced classes. Based on the selected parameters, machine learning models are employed to predict the failure of a given cell. The potential of the proposed methodology is evaluated over a set of industrial data. Experimental results demonstrate that our methodology can provide accurate test predictions (0.95+ accuracy, F1-score, and Area Under the Receiver Operating Characteristic curve (AUC-ROC)).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Machine Learning-based BGP Traffic Prediction
    Farasat, Talaya
    Rathore, Muhammad Ahmad
    Khan, Akmal
    Kim, JongWon
    Posegga, Joachim
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1925 - 1934
  • [32] On the Applicability of Machine Learning-based Online Failure Prediction for Modern Complex Systems
    Campos, Joao R.
    Costa, Ernesto
    Vieira, Marco
    2022 18TH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC 2022), 2022, : 49 - 56
  • [33] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    NEUROSURGICAL FOCUS, 2023, 55 (03)
  • [34] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [35] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42
  • [36] Machine learning-based test smell detection
    Valeria Pontillo
    Dario Amoroso d’Aragona
    Fabiano Pecorelli
    Dario Di Nucci
    Filomena Ferrucci
    Fabio Palomba
    Empirical Software Engineering, 2024, 29
  • [37] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [38] Practical Machine Learning-Based Sepsis Prediction
    Pettinati, Michael J.
    Chen, Gengbo
    Rajput, Kuldeep Singh
    Selvaraj, Nandakumar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 4986 - 4991
  • [39] Machine learning-based test smell detection
    Pontillo, Valeria
    d'Aragona, Dario Amoroso
    Pecorelli, Fabiano
    Di Nucci, Dario
    Ferrucci, Filomena
    Palomba, Fabio
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (02)
  • [40] Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0
    Romeo, Luca
    Loncarski, Jelena
    Paolanti, Marina
    Bocchini, Gianluca
    Mancini, Adriano
    Frontoni, Emanuele
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140