Double Refinement Network for Efficient Monocular Depth Estimation

被引:0
|
作者
Durasov, Nikita [1 ,2 ]
Romanov, Mikhail [1 ]
Bubnova, Valeriya [1 ]
Bogomolov, Pavel [1 ]
Konushin, Anton [1 ]
机构
[1] Samsung AI Ctr Moscow, Moscow, Russia
[2] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, Lausanne, Switzerland
关键词
D O I
10.1109/iros40897.2019.8968227
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth estimation is the task of obtaining a measure of distance for each pixel using a single image. It is an important problem in computer vision and is usually solved using neural networks. Though recent works in this area have shown significant improvement in accuracy, the state-of-the-art methods tend to require massive amounts of memory and time to process an image. The main purpose of this work is to improve the performance of the latest solutions with no decrease in accuracy. To this end, we introduce the Double Refinement Network architecture. The proposed method achieves state-of-the-art results on the standard benchmark RGB-D dataset NYU Depth v2, while its frames per second rate is significantly higher (up to 18 times speedup per image at batch size 1) and the RAM usage is lower.
引用
收藏
页码:5889 / 5894
页数:6
相关论文
共 50 条
  • [1] MobileXNet: An Efficient Convolutional Neural Network for Monocular Depth Estimation
    Dong, Xingshuai
    Garratt, Matthew A.
    Anavatti, Sreenatha G.
    Abbass, Hussein A.
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 20134 - 20147
  • [2] Multilevel Pyramid Network for Monocular Depth Estimation Based on Feature Refinement and Adaptive Fusion
    Xu, Huihui
    Li, Fei
    [J]. ELECTRONICS, 2022, 11 (16)
  • [3] Pyramid frequency network with spatial attention residual refinement module for monocular depth estimation
    Lu, Zhengyang
    Chen, Ying
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (02)
  • [4] PADENet: An Efficient and Robust Panoramic Monocular Depth Estimation Network for Outdoor Scenes
    Zhou, Keyang
    Wang, Kaiwei
    Yang, Kailun
    [J]. 2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [5] Uncertainty Estimation for Efficient Monocular Depth Perception
    Du, Hao
    Cheng, Guoan
    Matsune, Ai
    Zhu, Qiang
    Zhan, Shu
    [J]. 2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 804 - 808
  • [6] Dynamic Guided Network for Monocular Depth Estimation
    Xing, Xiaoxia
    Cai, Yinghao
    Wang, Yanqing
    Lu, Tao
    Yang, Yiping
    Wen, Dayong
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5459 - 5465
  • [7] Bidirectional Attention Network for Monocular Depth Estimation
    Aich, Shubhra
    Vianney, Jean Marie Uwabeza
    Islam, Md Amirul
    Kaur, Mannat
    Liu, Bingbing
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11746 - 11752
  • [8] DTTNet: Depth Transverse Transformer Network for Monocular Depth Estimation
    Kamath, Shreyas K. M.
    Rajeev, Srijith
    Panetta, Karen
    Agaian, Sos S.
    [J]. MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2022, 2022, 12100
  • [9] EMTNet: efficient mobile transformer network for real-time monocular depth estimation
    Long Yan
    Fuyang Yu
    Chao Dong
    [J]. Pattern Analysis and Applications, 2023, 26 : 1833 - 1846
  • [10] Efficient unsupervised monocular depth estimation using attention guided generative adversarial network
    Sumanta Bhattacharyya
    Ju Shen
    Stephen Welch
    Chen Chen
    [J]. Journal of Real-Time Image Processing, 2021, 18 : 1357 - 1368