UNSUPERVISED FUZZY C-MEANS CLUSTERING FOR MOTOR IMAGERY EEG RECOGNITION

被引:0
|
作者
Hsu, Wei-Yen [1 ]
Lin, Chi-Yuan [2 ]
Kuo, Wen-Feng [3 ]
Liou, Michelle [1 ]
Sun, Yung-Nien [4 ]
Tsai, Arthur Chih-Hsin [1 ]
Hsu, Hsien-Jen [5 ]
Chen, Po-Hsun [6 ]
Chen, I-Ru [7 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 115, Taiwan
[2] Natl Chin Yi Univ Technol, Dept Comp Sci & Informat Engn, Taiping City 411, Taichung, Taiwan
[3] Natl Cheng Kung Univ Hosp, Dept Med Informat, Tainan 701, Taiwan
[4] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 701, Taiwan
[5] Natl Cheng Kung Univ, Inst Mfg Informat & Syst, Tainan 701, Taiwan
[6] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 701, Taiwan
[7] Fu Jen Catholic High Sch, Dept Math, Chia I, Taiwan
关键词
Brain-computer interface (BCI); Electroencephalogram (EEG); Motor imagery (MI); Fractal dimension (FD); Fuzzy c-means (FCM); ABNORMAL SIGNAL-DETECTION; FRACTAL FEATURES; WAVELET; CLASSIFICATION; ALGORITHM; INTERFACE; MACHINE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, an electroencephalogram (EEG) recognition system is proposed on single-trial motor imagery (MI) data. Fuzzy c-means (FCM) clustering is used for the unsupervised recognition of left and right MI data by combining with selected active segments and multiresolution fractal features. Active segment selection is used to detect active segments situated at most discriminable areas in the time-frequency domain. The multiresolution fractal features are then extracted by using modified fractal dimension from wavelet data. Finally, FCM clustering is used as the discriminant of MI features. The FCM clustering is an adaptive approach suitable for the clustering of non-stationary biomedical signals. Compared with several popular supervised classifiers, FCM clustering provides a potential for BCI application.
引用
收藏
页码:4965 / 4976
页数:12
相关论文
共 50 条
  • [21] Fuzzy Clustering Using C-Means Method
    Krastev, Georgi
    Georgiev, Tsvetozar
    [J]. TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2015, 4 (02): : 144 - 148
  • [22] On Fuzzy c-Means and Membership Based Clustering
    Torra, Vicenc
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I (IWANN 2015), 2015, 9094 : 597 - 607
  • [23] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    [J]. APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52
  • [24] Fuzzy Approaches To Hard c-Means Clustering
    Runkler, Thomas A.
    Keller, James M.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [25] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    [J]. Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [26] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [27] Hierarchically Structured Fuzzy c-Means Clustering
    Hye Won Suk
    Ji Yeh Choi
    Heungsun Hwang
    [J]. Behaviormetrika, 2013, 40 (1) : 1 - 17
  • [28] Intuitionistic fuzzy C-means clustering algorithms
    Xu, Zeshui
    Wu, Junjie
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (04) : 580 - 590
  • [29] Gaussian Collaborative Fuzzy C-Means Clustering
    Yunlong Gao
    Zhihao Wang
    Huidui Li
    Jinyan Pan
    [J]. International Journal of Fuzzy Systems, 2021, 23 : 2218 - 2234
  • [30] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744