Magnetoresistive Hybrid Sensors for Simultaneous Low-Field MRI and Biomagnetic Measurements

被引:0
|
作者
Sergeeva-Chollet, Natalia [1 ]
Dyvorne, Hadrien [1 ]
Polovy, Hedwige [1 ]
Pannetier-Lecoeur, Myriam [1 ]
Fermon, Claude [1 ]
机构
[1] CEA Saclay, DSM, IRAMIS, SPEC, F-91191 Gif Sur Yvette, France
关键词
GMR; NMR; low-field MRI; MEG;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recently developed magnetoresistive hybrid sensors can detect magnetic signals in the femtotesla range. This sensor is a combination of a Giant Magnetoresistive (GMR) field sensor and flux-to-field superconducting transformer [1]. Hybrid sensors are the good candidates for Low-Field Magnetic Resonance Imaging (LF-MRI) and neural signal detection. The primary advantages of these sensors are their robustness against external static fields and fast recovery after RF-pulses. We present the first the results obtained on low-field NMR with static fields up to 8 mT. MRI images obtained at LF-MRI without pre-polarization will be presented. Finally the combination of low-field MRI based on hybrid sensors with neural signal detection (MEG) will be discussed.
引用
收藏
页码:70 / 73
页数:4
相关论文
共 50 条
  • [41] The deep route to low-field MRI with high potential
    Patricia M. Johnson
    Yvonne W. Lui
    Nature, 2023, 623 : 700 - 701
  • [42] Pre-Processing of Low-Field Brain MRI
    Ishak, N. F.
    Logeswaran, R.
    Tan, W. H.
    PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS (CIMMACS '08): RECENT ADVANCES IN COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, 2008, : 41 - 46
  • [43] MRI in rheumatoid arthritis of the hands: Comparison of high-field and low-field MRI
    Taouli, BA
    Zaim, S
    Lynch, JA
    Peterfy, CG
    Stork, A
    Fan, B
    RADIOLOGY, 2001, 221 : 523 - 523
  • [44] Low-field MRI: A report on the 2022 ISMRM workshop
    Campbell-Washburn, Adrienne E.
    Keenan, Kathryn E.
    Hu, Peng
    Mugler, John P., III
    Nayak, Krishna S.
    Webb, Andrew G.
    Obungoloch, Johnes
    Sheth, Kevin N.
    Hennig, Juergen
    Rosen, Matthew S.
    Salameh, Najat
    Sodickson, Daniel K.
    Stein, Joel M.
    Marques, Jose P.
    Simonetti, Orlando P.
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (04) : 1682 - 1694
  • [45] Deep learning for fast low-field MRI acquisitions
    Reina Ayde
    Tobias Senft
    Najat Salameh
    Mathieu Sarracanie
    Scientific Reports, 12
  • [46] MRI of the equine digit with a dedicated low-field magnet
    Choquet, P
    Sick, H
    Constantinesco, A
    VETERINARY RECORD, 2000, 146 (21) : 616 - 617
  • [47] Nexus: A versatile console for advanced low-field MRI
    Schote, David
    Silemek, Berk
    O'Reilly, Thomas
    Seifert, Frank
    Assmy, Jan-Lukas
    Kolbitsch, Christoph
    Webb, Andrew G.
    Winter, Lukas
    MAGNETIC RESONANCE IN MEDICINE, 2025, 93 (05) : 2224 - 2238
  • [48] Deep learning for fast low-field MRI acquisitions
    Ayde, Reina
    Senft, Tobias
    Salameh, Najat
    Sarracanie, Mathieu
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [49] Repeatability of image quality in very low-field MRI
    Poojar, Pavan
    Oiye, Ivan Etoku
    Aggarwal, Kunal
    Jimeno, Marina Manso
    Vaughan, John Thomas
    Geethanath, Sairam
    NMR IN BIOMEDICINE, 2024, 37 (10)
  • [50] Low-Field Designs for Interior MRI and CT Coupling
    Gjesteby, Lars
    Getzin, Matthew
    Wang, Ge
    2015 41ST ANNUAL NORTHEAST BIOMEDICAL ENGINEERING CONFERENCE (NEBEC), 2015,