Semantic Table Retrieval Using Keyword and Table Queries

被引:6
|
作者
Zhang, Shuo [1 ]
Balog, Krisztian [2 ]
机构
[1] Bloomberg, 3 Queen Victoria St, London EC4N 4TQ, England
[2] Univ Stavanger, Dept Elect Engn & Comp Sci, NO-4036 Stavanger, Norway
关键词
Table search; table retrieval; JOIN;
D O I
10.1145/3441690
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Y Tables on the Web contain a vast amount of knowledge in a structured form. To tap into this valuable resource, we address the problem of table retrieval: answering an information need with a ranked list of tables. We investigate this problem in two different variants, based on how the information need is expressed: as a keyword query or as an existing table ("query-by-table"). The main novel contribution of this work is a semantic table retrieval framework for matching information needs (keyword or table queries) against tables. Specifically, we (i) represent queries and tables in multiple semantic spaces (both discrete sparse and continuous dense vector representations) and (ii) introduce various similarity measures for matching those semantic representations. We consider all possible combinations of semantic representations and similarity measures and use these as features in a supervised learning model. Using two purpose-built test collections based on Wikipedia tables, we demonstrate significant and substantial improvements over state-of-the-art baselines.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Ad Hoc Table Retrieval using Semantic Similarity
    Zhang, Shuo
    Balog, Krisztian
    [J]. WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 1553 - 1562
  • [2] Content-based table retrieval for web queries
    Sun, Yibo
    Yan, Zhao
    Tang, Duyu
    Duan, Nan
    Qin, Bing
    [J]. NEUROCOMPUTING, 2019, 349 : 183 - 189
  • [3] Data association and loop closure in semantic dynamic SLAM using the table retrieval method
    Chengqun Song
    Bo Zeng
    Tong Su
    Ke Zhang
    Jun Cheng
    [J]. Applied Intelligence, 2022, 52 : 11472 - 11488
  • [4] Data association and loop closure in semantic dynamic SLAM using the table retrieval method
    Song, Chengqun
    Zeng, Bo
    Su, Tong
    Zhang, Ke
    Cheng, Jun
    [J]. APPLIED INTELLIGENCE, 2022, 52 (10) : 11472 - 11488
  • [5] Iterators evaluate table queries
    Gluche, D
    Kuhl, D
    Weihe, K
    [J]. ACM SIGPLAN NOTICES, 1998, 33 (01) : 22 - 29
  • [6] Game State Retrieval with Keyword Queries
    Ushiku, Atsushi
    Mori, Shinsuke
    Kameko, Hirotaka
    Tsuruoka, Yoshimasa
    [J]. SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 877 - 880
  • [7] Answering Table Queries on the Web using Column Keywords
    Pimplikar, Rakesh
    Sarawagi, Sunita
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2012, 5 (10): : 908 - 919
  • [8] Speech retrieval using spoken keyword extraction and semantic verification
    Wu, Chung-Hsien
    Huang, Chien-Lin
    Hsu, Chin-Shun
    Lee, Kuei-Ming
    [J]. TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 1444 - +
  • [9] Web Table Retrieval using Multimodal Deep Learning
    Shraga, Roee
    Roitman, Haggai
    Feigenblat, Guy
    Cannim, Mustafa
    [J]. PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1399 - 1408
  • [10] Table extraction for answer retrieval
    Wei, Xing
    Croft, Bruce
    McCallum, Andrew
    [J]. INFORMATION RETRIEVAL, 2006, 9 (05): : 589 - 611