Web Table Retrieval using Multimodal Deep Learning

被引:20
|
作者
Shraga, Roee [1 ]
Roitman, Haggai [2 ]
Feigenblat, Guy [2 ]
Cannim, Mustafa [2 ]
机构
[1] Technion Israel Inst Technol, Haifa, Israel
[2] IBM Res, Yorktown Hts, NY USA
关键词
D O I
10.1145/3397271.3401120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the web table retrieval task, aiming to retrieve and rank web tables as whole answers to a given information need. To this end, we formally define web tables as multimodal objects. We then suggest a neural ranking model, termed MTR, which makes a novel use of Gated Multimodal Units (GMUs) to learn a joint-representation of the query and the different table modalities. We further enhance this model with a co-learning approach which utilizes automatically learned query-independent and query-dependent "helper" labels. We evaluate the proposed solution using both ad hoc queries (WikiTables) and natural language questions (GNQtables). Overall, we demonstrate that our approach surpasses the performance of previously studied state-of-the-art baselines.
引用
收藏
页码:1399 / 1408
页数:10
相关论文
共 50 条
  • [1] Deep Multimodal Learning for Information Retrieval
    Ji, Wei
    Wei, Yinwei
    Zheng, Zhedong
    Fei, Hao
    Chua, Tat-Seng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9739 - 9741
  • [2] Cross-Modal Retrieval using Random Multimodal Deep Learning
    Somasekar, Hemanth
    Naveen, Kavya
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (02): : 185 - 200
  • [3] Multimodal Deep Learning and Fast Retrieval for Recommendation
    Ciarlo, Daniele
    Portinale, Luigi
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 52 - 60
  • [4] Deep Multimodal Learning for Affective Analysis and Retrieval
    Pang, Lei
    Zhu, Shiai
    Ngo, Chong-Wah
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (11) : 2008 - 2020
  • [5] Deep Multimodal Transfer Learning for Cross-Modal Retrieval
    Zhen, Liangli
    Hu, Peng
    Peng, Xi
    Goh, Rick Siow Mong
    Zhou, Joey Tianyi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 798 - 810
  • [6] Scalable Deep Multimodal Learning for Cross-Modal Retrieval
    Hu, Peng
    Zhen, Liangli
    Peng, Dezhong
    Liu, Pei
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 635 - 644
  • [7] Table Detection using Deep Learning
    Gilani, Azka
    Qasim, Shah Rukh
    Malik, Imran
    Shafait, Faisal
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 771 - 776
  • [8] Web Table Extraction, Retrieval and Augmentation
    Zhang, Shuo
    Balog, Krisztian
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 1409 - 1410
  • [9] Multimodal Multitask Deep Learning for X-Ray Image Retrieval
    Yu, Yang
    Hu, Peng
    Lin, Jie
    Krishnaswamy, Pavitra
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 603 - 613
  • [10] Emotion Recognition Using Multimodal Deep Learning
    Liu, Wei
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 521 - 529