Web Table Retrieval using Multimodal Deep Learning

被引:20
|
作者
Shraga, Roee [1 ]
Roitman, Haggai [2 ]
Feigenblat, Guy [2 ]
Cannim, Mustafa [2 ]
机构
[1] Technion Israel Inst Technol, Haifa, Israel
[2] IBM Res, Yorktown Hts, NY USA
关键词
D O I
10.1145/3397271.3401120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the web table retrieval task, aiming to retrieve and rank web tables as whole answers to a given information need. To this end, we formally define web tables as multimodal objects. We then suggest a neural ranking model, termed MTR, which makes a novel use of Gated Multimodal Units (GMUs) to learn a joint-representation of the query and the different table modalities. We further enhance this model with a co-learning approach which utilizes automatically learned query-independent and query-dependent "helper" labels. We evaluate the proposed solution using both ad hoc queries (WikiTables) and natural language questions (GNQtables). Overall, we demonstrate that our approach surpasses the performance of previously studied state-of-the-art baselines.
引用
收藏
页码:1399 / 1408
页数:10
相关论文
共 50 条
  • [21] Multimodal Deep Learning Crime Prediction Using Tweets
    Tam, Sakirin
    Tanriover, Omer Ozgur
    IEEE ACCESS, 2023, 11 : 93204 - 93214
  • [22] Image Captioning Using Multimodal Deep Learning Approach
    Farkh, Rihem
    Oudinet, Ghislain
    Foued, Yasser
    Computers, Materials and Continua, 2024, 81 (03): : 3951 - 3968
  • [23] Integrating Heterogeneous Datasets by Using Multimodal Deep Learning
    Khoshghalbvash, Fariba
    Gao, Jean X.
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL III: SYSTEMS, 2020, 517 : 279 - 285
  • [24] Multimodal Movie Recommendation System Using Deep Learning
    Mu, Yongheng
    Wu, Yun
    MATHEMATICS, 2023, 11 (04)
  • [25] Geographic Atrophy Segmentation Using Multimodal Deep Learning
    Spaide, Theodore
    Jiang, Jiaxiang
    Patil, Jasmine
    Anegondi, Neha
    Steffen, Verena
    Kawczynski, Michael G.
    Newton, Elizabeth M.
    Rabe, Christina
    Gao, Simon S.
    Lee, Aaron Y.
    Holz, Frank G.
    Sadda, Srinivas
    Schmitz-Valckenberg, Steffen
    Ferrara, Daniela
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (07):
  • [26] Multimodal Spam Classification Using Deep Learning Techniques
    Seth, Shikhar
    Biswas, Sagar
    2017 13TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY AND INTERNET-BASED SYSTEMS (SITIS), 2017, : 346 - 349
  • [27] Multimodal Emotion Recognition using Deep Learning Architectures
    Ranganathan, Hiranmayi
    Chakraborty, Shayok
    Panchanathan, Sethuraman
    2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2016), 2016,
  • [28] A multimodal approach using deep learning for fall detection
    Galvao, Yves M.
    Ferreira, Janderson
    Albuquerque, Vinicius A.
    Barros, Pablo
    Fernandes, Bruno J. T.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
  • [29] Deep multimodal learning for cross-modal retrieval: One model for all tasks
    Beltran, L. Viviana Beltran
    Caicedo, Juan C.
    Journet, Nicholas
    Coustaty, Mickael
    Lecellier, Francois
    Doucet, Antoine
    PATTERN RECOGNITION LETTERS, 2021, 146 : 38 - 45
  • [30] A new model driven architecture for deep learning-based multimodal lifelog retrieval
    Ben Abdallah, Fatma
    Feki, Ghada
    Ben Ammar, Anis
    Ben Amar, Chokri
    26. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2018), 2018, 2803 : 8 - 17