Finite-temperature bosonization

被引:0
|
作者
Bowen, G [1 ]
Gulácsi, M [1 ]
机构
[1] Australian Natl Univ, Inst Adv Studies, Dept Theoret Phys, Canberra, ACT 0200, Australia
关键词
D O I
10.1080/13642810108208563
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Finite-temperature properties of a non-Fermi-liquid system is one of the most challenging problems in the current understanding of strongly correlated electron systems. The paradigmatic arena for studying non-Fermi liquids is in one dimension, where the concept of a Luttinger liquid has arisen. The existence of a critical point at zero temperature in one-dimensional systems, and the fact that experiments are all undertaken at finite temperatures, implies a need for these one-dimensional systems to be examined at finite temperatures. Accordingly, we extended the well-known bosonization method of one-dimensional electron systems to finite temperatures. We have used this new bosonization method to calculate finite-temperature asymptotic correlation functions for linear fermions, the Tomonaga-Luttinger model. and the Hubbard model.
引用
收藏
页码:1409 / 1442
页数:34
相关论文
共 50 条
  • [21] Finite-temperature QCD on the lattice
    Ukawa, A
    NUCLEAR PHYSICS B, 1997, : 106 - 119
  • [22] Finite-temperature quantum billiards
    Salomov, UR
    Matrasulov, DU
    Khanna, FC
    Milibaeva, GM
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 167 - +
  • [23] Finite-temperature correlation functions
    D. S. Kuzmenko
    Yu. A. Simonov
    Physics of Atomic Nuclei, 2001, 64 : 1887 - 1894
  • [24] ON THE FINITE-TEMPERATURE TRANSITION OF QCD
    GUPTA, R
    GURALNIK, G
    KILCUP, GW
    PATEL, A
    SHARPE, SR
    PHYSICS LETTERS B, 1988, 201 (04) : 503 - 509
  • [25] Evidence for a Finite-Temperature Insulator
    M. Ovadia
    D. Kalok
    I. Tamir
    S. Mitra
    B. Sacépé
    D. Shahar
    Scientific Reports, 5
  • [26] Finite-Temperature Higgs Potentials
    Dolgopolov, M., V
    Gurskaya, A., V
    Rykova, E. N.
    19TH INTERNATIONAL SEMINAR ON HIGH ENERGY PHYSICS (QUARKS-2016), 2016, 125
  • [27] FINITE-TEMPERATURE HFB THEORY
    GOODMAN, AL
    NUCLEAR PHYSICS A, 1981, 352 (01) : 30 - 44
  • [28] FINITE-TEMPERATURE CERENKOV RADIATION
    PARDY, M
    PHYSICS LETTERS A, 1989, 134 (06) : 357 - 359
  • [29] Spectra of quarkonia at finite-temperature
    Butanov, KT
    Matrasulov, DU
    Rakhimov, KY
    Khanna, FC
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 329 - +
  • [30] THE FINITE-TEMPERATURE SCHWINGER MODEL
    STAM, K
    VISSER, J
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1985, 11 (09) : L143 - L145