Thermal plasma gasification of organic waste stream coupled with CO2-sorption enhanced reforming employing different sorbents for enhanced hydrogen production

被引:30
|
作者
Sikarwar, Vineet Singh [1 ,2 ,3 ]
Peela, Nageswara Rao [4 ]
Vuppaladadiyam, Arun Krishna [5 ,6 ,7 ]
Ferreira, Newton Libanio [8 ]
Maslani, Alan [1 ]
Tomar, Ritik [2 ,9 ]
Meers, Erik [3 ]
Jeremias, Michal [1 ]
Pohorely, Michael [2 ]
机构
[1] Czech Acad Sci, Inst Plasma Phys, Vvi, Za Slovankou 1782-3, Prague 18200 8, Czech Republic
[2] Univ Chem & Technol, Dept Power Engn, Tech 5, Prague 16628 6, Czech Republic
[3] Univ Ghent, Dept Green Chem & Technol, B-9000 Ghent, Belgium
[4] Indian Inst Technol Guwahati, Dept Chem Engn, North Guwahati 781039, Assam, India
[5] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, 11 Yuk Choi Rd, Hong Kong, Peoples R China
[6] James Cook Univ, Coll Sci & Engn, Townsville, Qld 4811, Australia
[7] Indian Inst Technol Delhi, Dept Chem Engn, Catalyt React Engn Lab, New Delhi, India
[8] Univ Ctr FEI, BR-09850901 Sao Bernardo Do Campo, SP, Brazil
[9] ORLEN Unipetrol Ctr Res & Educ ORLEN UniCRE, Areal Chempk, Litvinov Zaluzi 43670, Czech Republic
关键词
STEAM GASIFICATION; BIOMASS GASIFICATION; FLUIDIZED-BED; CO2; CAPTURE; SORPTION; ABSORPTION; ADSORPTION; SYNGAS; MODEL;
D O I
10.1039/d1ra07719h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the past few years, rising concerns vis-a-vis global climate change and clean energy demand have brought worldwide attention to developing the 'biomass/organic waste-to-energy' concept as a zero-emission, environment-friendly and sustainable pathway to simultaneously quench the global energy thirst and process diverse biomass/organic waste streams. Bioenergy with carbon capture and storage (BECCS) can be an influential technological route to curb climate change to a significant extent by preventing CO2 discharge. One of the pathways to realize BECCS is via in situ CO2-sorption coupled with a thermal plasma gasification process. In this study, an equilibrium model is developed using RDF as a model compound for plasma assisted CO2-sorption enhanced gasification to evaluate the viability of the proposed process in producing H-2 rich syngas. Three different classes of sorbents are investigated namely, a high temperature sorbent (CaO), an intermediate temperature sorbent (Li4SiO4) and a low temperature sorbent (MgO). The distribution of gas species, H-2 yield, dry gas yield and LHV are deduced with the varying gasification temperature, reforming temperature, steam-to-feedstock ratio and sorbent-to-feedstock for all three sorbents. Moreover, optimal values of different process variables are predicted. Maximum H-2 is noted to be produced at 550 degrees C for CaO (79 vol%), 500 degrees C for MgO (29 vol%) and 700 degrees C (55 vol%) for Li4SiO4 whereas the optimal SOR/F ratios are found to be 1.5 for CaO, 1.0 for MgO and 2.5 for Li4SiO4. The results obtained in the study are promising to employ plasma assisted CO2-sorption enhanced gasification as an efficacious pathway to produce clean energy and thus achieve carbon neutrality.
引用
收藏
页码:6122 / 6132
页数:11
相关论文
共 50 条
  • [31] Sorption-enhanced ethanol steam reforming coupled with in-situ CO2 capture and conversion
    Quan, Cui
    Feng, Shaoxuan
    Gao, Shibo
    Zhang, Minhua
    Wu, Chunfei
    Miskolczi, Norbert
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 117
  • [32] Biomass gasification based on sorption-enhanced hydrogen production coupled with carbon utilization to produce tunable syngas for methanol synthesis
    Liu, Hongyu
    Tang, Yuting
    Ma, Xiaoqian
    Tang, Jiehong
    Yue, Wenchang
    ENERGY CONVERSION AND MANAGEMENT, 2024, 309
  • [33] MgH2 with different morphologies synthesized by thermal hydrogenolysis method for enhanced hydrogen sorption
    Setijadi, Eki J.
    Boyer, Cyrille
    Aguey-Zinsou, Kondo-Francois
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5746 - 5757
  • [34] Alkali Metal CO2 Sorbents and the Resulting Metal Carbonates: Potential for Process Intensification of Sorption-Enhanced Steam Reforming
    Memon, Muhammad Zaki
    Zhao, Xiao
    Sikarwar, Vineet Singh
    Vuppaladadiyam, Arun K.
    Milne, Steven J.
    Brown, Andy P.
    Li, Jinhui
    Zhao, Ming
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (01) : 12 - 27
  • [35] Simulation of a sorption-enhanced water gas-shift pilot technology for pure hydrogen production from a waste gasification plant
    Malsegna, Barbara
    Sebastiani, Alex
    Paz-Dias, Joao Guilherme da Gama
    Di Luca, Francesco
    Di Giuliano, Andrea
    Gallucci, Katia
    Materazzi, Massimiliano
    FUEL PROCESSING TECHNOLOGY, 2024, 254
  • [36] Sorbent enhanced hydrogen production from steam gasification of coal integrated with CO2 capture
    Sedghkerdar, Mohammad Hashem
    Mostafavi, Ehsan
    Mahinpey, Nader
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (30) : 17001 - 17008
  • [37] Enhanced hydrogen production from catalytic biomass gasification with in-situ CO2 capture
    Wang, Jianqiao
    Kang, Dongrui
    Shen, Boxiong
    Sun, Hongman
    Wu, Chunfei
    ENVIRONMENTAL POLLUTION, 2020, 267
  • [38] Hydrogen Production through CO2 Absorption Enhanced Diesel Steam Reforming for PEMFC Systems
    Mi, Wanliang
    Su, Qingquan
    Cheng, Qing
    Gong, Juan
    MATERIALS FOR ENVIRONMENTAL PROTECTION AND ENERGY APPLICATION, PTS 1 AND 2, 2012, 343-344 : 250 - 255
  • [39] Effect of hydrocarbon fractions, N2 and CO2 in feed gas on hydrogen production using sorption enhanced steam reforming: Thermodynamic analysis
    Adiya, Zainab Ibrahim S. G.
    Dupont, Valerie
    Mahmud, Tariq
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (34) : 21704 - 21718
  • [40] High-Purity Hydrogen Production by CO2 Addition for Sorption-Enhanced Steam Methane Reforming at a Temperature Below 600 °C
    Chen, You-Zhu
    Li, Lu-Lin
    Sheu, Wen-Jenn
    Chen, Yen-Cho
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (14) : 6169 - 6181