Topologically controlled circuits of human iPSC-derived neurons for electrophysiology recordings

被引:20
|
作者
Girardin, Sophie [1 ]
Clement, Blandine [1 ]
Ihle, Stephan J. [1 ]
Weaver, Sean [1 ]
Petr, Jana B. [1 ]
Mateus, Jose C. [2 ]
Duru, Jens [1 ]
Forro, Csaba [3 ]
Ruff, Tobias [1 ]
Fruh, Isabelle [4 ]
Mueller, Matthias [4 ]
Voeroes, Janos [1 ]
Magdalena [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Biosensors & Bioelect, Inst Biomed Engn, Gloriastr 35, CH-8092 Zurich, Switzerland
[2] Univ Porto, Inst Invest & Inovacao Saude, Rua Alfredo Allen 208, Porto, Portugal
[3] Cui Lab, S285 290 Jane Stanford Way Stanford, Stanford, CA 94305 USA
[4] Novartis Inst BioMed Res, Chem Biol & Therapeut, CH-4002 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
IN-VITRO MODELS; NETWORKS; PLATFORM; DESIGN; CHIP; TERM;
D O I
10.1039/d1lc01110c
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Bottom-up neuroscience, which consists of building and studying controlled networks of neurons in vitro, is a promising method to investigate information processing at the neuronal level. However, in vitro studies tend to use cells of animal origin rather than human neurons, leading to conclusions that might not be generalizable to humans and limiting the possibilities for relevant studies on neurological disorders. Here we present a method to build arrays of topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons. The circuits consist of 4 to 50 neurons with well-defined connections, confined by microfabricated polydimethylsiloxane (PDMS) membranes. Such circuits were characterized using optical imaging and microelectrode arrays (MEAs), suggesting the formation of functional connections between the neurons of a circuit. Electrophysiology recordings were performed on circuits of human iPSC-derived neurons for at least 4.5 months. We believe that the capacity to build small and controlled circuits of human iPSC-derived neurons holds great promise to better understand the fundamental principles of information processing and storing in the brain.
引用
收藏
页码:1386 / 1403
页数:18
相关论文
共 50 条
  • [21] EVALUATION OF ESTABLISHED HUMAN IPSC-DERIVED NEURONS TO MODEL NEURODEGENERATIVE DISEASES
    Meneghello, G.
    Verheyen, A.
    Van Ingen, M.
    Kuijlaars, J.
    Tuefferd, M.
    Van den Wyngaert, I.
    Nuydens, R.
    NEUROSCIENCE, 2015, 301 : 204 - 212
  • [22] A functional phenotypic screen for synapse formation in human iPSC-derived neurons
    Sharp, Jason
    Cai, Beibei
    Essex, Anthony
    Batchelder, Erika
    Feng, Shuyun
    McDonough, Patrick
    Price, Jeffrey
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2015, 75 : 189 - 190
  • [23] An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons
    Rhee, Hong Jun
    Shaib, Ali H.
    Rehbach, Kristina
    Lee, ChoongKu
    Seif, Peter
    Thomas, Carolina
    Gideons, Erinn
    Guenther, Anja
    Krutenko, Tamara
    Hebisch, Matthias
    Peitz, Michael
    Brose, Nils
    Bruestle, Oliver
    Rhee, Jeong Seop
    CELL REPORTS, 2019, 27 (07): : 2212 - +
  • [24] In vitro neurotoxicity testing using functional human iPSC-derived neurons
    Saavedra, Lorena
    Portman, Thomas
    Haag, Daniel
    Davila, Jonathan
    Shafer, Timothy J.
    Wallace, Kathleen
    Freudenrich, Theresa
    Liu, Hui
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2021, 111
  • [25] Are human iPSC-derived neurons a good tool to detect seizurogenic drugs?
    Kreir, Mohamed
    Teuns, Greet
    Lu, Hua Rong
    Gallacher, David J.
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2019, 99
  • [26] Modeling ALS and FTD with iPSC-derived neurons
    Lee, Sebum
    Huang, Eric J.
    BRAIN RESEARCH, 2017, 1656 : 88 - 97
  • [27] Common Marmoset Monkey iPSC-Derived Neurons
    Vermilyea, S. C.
    Guthrie, S.
    Meyer, M.
    Smuga-Otto, K.
    Braun, K.
    Howden, S.
    Thomson, J. A.
    Zhang, S. -C.
    Golos, T. G.
    Emborg, M. E.
    CELL TRANSPLANTATION, 2015, 24 (04) : 774 - 775
  • [28] Human iPSC-Derived Neurons with Reliable Synapses and Large Presynaptic Action Potentials
    Bullmann, Torsten
    Kaas, Thomas
    Ritzau-Jost, Andreas
    Woehner, Anne
    Kirmann, Toni
    Rizalar, Filiz Sila
    Holzer, Max
    Nerlich, Jana
    Puchkov, Dmytro
    Geis, Christian
    Eilers, Jens
    Kittel, Robert J.
    Arendt, Thomas
    Haucke, Volker
    Hallermann, Stefan
    JOURNAL OF NEUROSCIENCE, 2024, 44 (24):
  • [29] Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-Derived Human Neurons
    Ren, Yong
    Jiang, Houbo
    Hu, Zhixing
    Fan, Kevin
    Wang, Jun
    Janoschka, Stephen
    Wang, Xiaomin
    Ge, Shaoyu
    Feng, Jian
    STEM CELLS, 2015, 33 (01) : 68 - 78
  • [30] Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes
    Simmons, Daniel W.
    Malayath, Ganesh
    Schuftan, David R.
    Guo, Jingxuan
    Oguntuyo, Kasoorelope
    Ramahdita, Ghiska
    Sun, Yuwen
    Jordan, Samuel D.
    Munsell, Mary K.
    Kandalaft, Brennan
    Pear, Missy
    Rentschler, Stacey L.
    Huebsch, Nathaniel
    APL BIOENGINEERING, 2024, 8 (01)