Stabilized spectral methods for the Navier-Stokes equations: residual-free bubbles and preconditioning

被引:16
|
作者
Canuto, C [1 ]
Russo, A
van Kemenade, V
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[2] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[3] NEC Europe Ltd, C&C Res Lab, D-53857 St Augustin, Germany
关键词
D O I
10.1016/S0045-7825(98)00083-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a stabilized spectral method for the incompressible Navier-Stokes equations; stabilization is achieved by using the residual-free bubbles approach. Numerical results for the regularized driven cavity and the backward-facing step are presented. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:65 / 83
页数:19
相关论文
共 50 条
  • [11] Approximation of the Stokes problem by residual-free macro bubbles
    Franca, L.P.
    Russo, A.
    East-West Journal of Numerical Mathematics, 1996, 4 (04): : 265 - 278
  • [12] Stabilized formulation of the Navier-Stokes equations
    Masud, A
    ENGINEERING MECHANICS: PROCEEDINGS OF THE 11TH CONFERENCE, VOLS 1 AND 2, 1996, : 1135 - 1138
  • [13] Subgrid stabilized defect correction methods for the Navier-Stokes equations
    Kaya, Songul
    Layton, William
    Riviere, Beatrice
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1639 - 1654
  • [14] LU factorizations and ILU preconditioning for stabilized discretizations of incompressible Navier-Stokes equations
    Konshin, Igor
    Olshanskii, Maxim
    Vassilevski, Yuri
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (03)
  • [15] Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations
    Ali, Shafqat
    Ballarin, Francesco
    Rozza, Gianluigi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (11) : 2399 - 2416
  • [16] Preconditioning of the Navier-Stokes Equations With Multiple Constraints
    White, Raymon
    Heil, Matthias
    Mihajlovic, Milan
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2281 - 2284
  • [17] PARALLEL SPECTRAL ELEMENT METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    FISCHER, PF
    PATERA, AT
    SOLUTION OF SUPERLARGE PROBLEMS IN COMPUTATIONAL MECHANICS, 1989, : 49 - 65
  • [18] Spectral methods for the compressible boundary layer and for the Navier-Stokes equations
    Nastase, A
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 754 - 759
  • [19] Spectral Submanifolds of the Navier-Stokes Equations
    Buza, Gergely
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (02): : 1052 - 1089
  • [20] Stabilized mixed finite element methods for the Navier-Stokes equations with damping
    Li, Zhenzhen
    Shi, Dongyang
    Li, Minghao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (02) : 605 - 619