Non-negative cd-coefficients of Gorenstein posets

被引:2
|
作者
Reading, N [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
cd-index; Charney-Davis conjecture; eulerian poset; flag f-vector; Gorenstein;
D O I
10.1016/j.disc.2003.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a convolution formula for cd-index coefficients. The convolution formula, together with the proof by Davis and Okun of the Charney-Davis Conjecture in dimension 3, imply that certain cd-coefficients are non-negative for all Gorenstein* posets. Additional coefficients are shown to be non-negative by interpreting them in terms of the top homology of certain Cohen-Macaulay complexes. In particular we verify, up to rank 6, Stanley's conjecture that the coefficients in the cd-index of a Gorenstein* ranked poset are non-negative. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 50 条
  • [31] Non-negative spectrum of a digraph
    Jovanovic, Irena M.
    ARS MATHEMATICA CONTEMPORANEA, 2017, 12 (01) : 167 - 182
  • [32] MOMENTS OF NON-NEGATIVE MASS
    ROGOSINSKI, WW
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 245 (1240): : 1 - 27
  • [33] Non-negative sparse coding
    Hoyer, PO
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 557 - 565
  • [34] On the non-negative garrotte estimator
    Yuan, Ming
    Lin, Yi
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 143 - 161
  • [35] GODOT: THE NON-NEGATIVE NOTHINGNESS
    Kubiak, Aubrey D.
    ROMANCE NOTES, 2008, 48 (03) : 395 - 405
  • [36] Semigroups of non-negative matrices
    Protasov, V. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (06) : 1186 - 1188
  • [37] Non-negative Laplacian Embedding
    Luo, Dijun
    Ding, Chris
    Huang, Heng
    Li, Tao
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 337 - +
  • [38] HYPERCUBES OF NON-NEGATIVE INTEGERS
    GOLOMB, SW
    POSNER, EC
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 71 (04) : 587 - &
  • [39] NON-NEGATIVE EXPONENTIAL SPLINES
    WEVER, U
    COMPUTER-AIDED DESIGN, 1988, 20 (01) : 11 - 16
  • [40] NON-NEGATIVE DURATIONAL HMM
    Hamar, Jarle Bauck
    Doddipatla, Rama Sanand
    Svendsen, Torbjorn
    Sreenivas, Thippur
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,