Energy Efficient Boosting of GEMM Accelerators for DNN via Reuse

被引:2
|
作者
Cicek, Nihat Mert [1 ]
Shen, Xipeng [2 ]
Ozturk, Ozcan [3 ]
机构
[1] Aselsan Corp, Mehmet Akif Ersoy Mahallesi Istiklal Marsi Caddes, TR-06200 Ankara, Turkey
[2] North Carolina State Univ, Dept Comp Sci, Coll Engn, 890 Oval Dr,Engn Bldg 2, Raleigh, NC 27695 USA
[3] Bilkent Univ, Comp Engn Dept, Ankara, Turkey
关键词
Reuse; deep neural networks; gemm; accelerator; APPROXIMATE NEAREST-NEIGHBOR;
D O I
10.1145/3503469
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reuse-centric convolutional neural networks (CNN) acceleration speeds up CNN inference by reusing computations for similar neuron vectors in CNN's input layer or activation maps. This new paradigm of optimizations is, however, largely limited by the overheads in neuron vector similarity detection, an important step in reuse-centric CNN. This article presents an in-depth exploration of architectural support for reuse-centric CNN. It addresses some major limitations of the state-of-the-art design and proposes a novel hardware accelerator that improves neuron vector similarity detection and reduces the energy consumption of reuse-centric CNN inference. The accelerator is implemented to support a wide variety of neural network settings with a banked memory subsystem. Design exploration is performed through RTL simulation and synthesis on an FPGA platform. When integrated into Eyeriss, the accelerator can potentially provide improvements up to 7.75x in performance. Furthermore, it can reduce the energy used for similarity detection up to 95.46%, and it can accelerate the convolutional layer up to 3.63x compared to the software-based implementation running on the CPU.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Leakage Reuse for Energy Efficient Near-Memory Computing of Heterogeneous DNN Accelerators
    Hossain, Md Shazzad
    Savidis, Ioannis
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2021, 11 (04) : 762 - 775
  • [2] Energy Efficient Computing with Heterogeneous DNN Accelerators
    Hossain, Md Shazzad
    Savidis, Ioannis
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [3] Targeting DNN Inference Via Efficient Utilization of Heterogeneous Precision DNN Accelerators
    Spantidi, Ourania
    Zervakis, Georgios
    Alsalamin, Sami
    Roman-Ballesteros, Isai
    Henkel, Joerg
    Amrouch, Hussam
    Anagnostopoulos, Iraklis
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2023, 11 (01) : 112 - 125
  • [4] Reusing GEMM Hardware for Efficient Execution of Depthwise Separable Convolution on ASIC-based DNN Accelerators
    Manasi, Susmita Dey
    Banerjee, Suvadeep
    Davare, Abhijit
    Sorokin, Anton A.
    Burns, Steven M.
    Kirkpatrick, Desmond A.
    Sapatnekar, Sachin S.
    2023 28TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2023, : 475 - 482
  • [5] Energy Profiling of DNN Accelerators
    Wess, Matthias
    Dallinger, Dominik
    Schnoell, Daniel
    Bittner, Matthias
    Goetzinger, Maximilian
    Jantsch, Axel
    2023 26TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN, DSD 2023, 2023, : 53 - 60
  • [6] Posit Process Element for Using in Energy-Efficient DNN Accelerators
    Zolfagharinejad, Mohamadreza
    Kamal, Mehdi
    Afzali-Khusha, Ali
    Pedram, Massoud
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2022, 30 (06) : 844 - 848
  • [7] MAx-DNN: Multi-Level Arithmetic Approximation for Energy-Efficient DNN Hardware Accelerators
    Leon, Vasileios
    Makris, Georgios
    Xydis, Sotirios
    Pekmestzi, Kiamal
    Soudris, Dimitrios
    2022 IEEE 13TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS), 2022, : 61 - 64
  • [8] CRPIM: An efficient compute-reuse scheme for ReRAM-based Processing-in-Memory DNN accelerators
    Hong, Shihao
    Chung, Yeh-Ching
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 153
  • [9] Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators
    Stutz, David
    Chandramoorthy, Nandhini
    Hein, Matthias
    Schiele, Bernt
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3632 - 3647
  • [10] Energy-Efficient DNN Inference on Approximate Accelerators Through Formal Property Exploration
    Spantidi, Ourania
    Zervakis, Georgios
    Anagnostopoulos, Iraklis
    Henkel, Joerg
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 3838 - 3849