GCWNet: A Global Context-Weaving Network for Object Detection in Remote Sensing Images

被引:28
|
作者
Wu, Yulin [1 ]
Zhang, Ke [1 ]
Wang, Jingyu [1 ,2 ]
Wang, Yezi [3 ]
Wang, Qi [2 ]
Li, Xuelong [2 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Astronaut, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence OPt & Elect iOPEN, Xian 710072, Peoples R China
[3] Aircraft Strength Res Inst China, Struct Hlth Monitoring & Intelligent Struct, Xian 710065, Peoples R China
[4] Northwestern Polytech Univ, Minist Ind & Informat Technol, Key Lab Intelligent Interact & Applicat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Remote sensing; Feature extraction; Task analysis; Semantics; Proposals; Convolution; Deep learning; feature enhancement; global context; object detection; remote sensing images; VEHICLE DETECTION; SHIP DETECTION; SALIENCY;
D O I
10.1109/TGRS.2022.3155899
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With practical applications such as environment surveillance, agricultural production, and disaster assessment, accurate object detection in remote sensing images is in high demand. Precise detection of object instances in remote sensing images remains considerably challenging due to dense instance stacking, large-scale variations, and complex backgrounds. To solve the mentioned issues, a novel global context-weaving network (GCWNet) is developed for object detection in remote sensing images. We propose two novel modules for feature extraction and refinement, which include the global context aggregation module (GCAM) and the feature refinement module (FRM). GCAM assembles a global context with high-level and low-level features through feature weaving, which facilitates dense object detection. Meanwhile, FRM convolves multiple receptive fields by combining different branches, thereby further refining the features and improving the feature distinction at different scales. Furthermore, we design to alleviate the sample imbalanced problem during training using focal loss and balanced L1 loss to improve object classification and regression, respectively. The experimental results indicate that GCWNet achieves superior performance in object classification and localization on the DOTA-v1.5 dataset, which illustrates the superiority of GCWNet.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] PSGCNet: A Pyramidal Scale and Global Context Guided Network for Dense Object Counting in Remote-Sensing Images
    Gao, Guangshuai
    Liu, Qingjie
    Hu, Zhenghui
    Li, Lu
    Wen, Qi
    Wang, Yunhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Discriminative Feature Pyramid Network For Object Detection In Remote Sensing Images
    Zhu, Xiaoqian
    Zhang, Xiangrong
    Zhang, Tianyang
    Zhu, Peng
    Tang, Xu
    Li, Chen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [33] Dynamic Context Coordination for Salient Object Detection in Optical Remote Sensing Images
    Huang, Jiarong
    Huang, Kan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [34] Global Context-Enhanced Network for Pixel-Level Change Detection in Remote Sensing Images
    Zhao, Zixue
    Li, Zhengpeng
    Miao, Jiawei
    Wu, Kunyang
    Wu, Jiansheng
    IAENG International Journal of Computer Science, 2024, 51 (08) : 1060 - 1070
  • [35] Adaptive adjacent context negotiation network for object detection in remote sensing imagery
    Dong, Yan
    Liu, Yundong
    Cheng, Yuhua
    Gao, Guangshuai
    Chen, Kai
    Li, Chunlei
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [36] Adaptive adjacent context negotiation network for object detection in remote sensing imagery
    School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
    不详
    PeerJ Comput. Sci.,
  • [37] Small Target Detection in Remote Sensing Images Based on Global Context Information
    Li, Hongyan
    Xu, Baoqing
    Zhang, Ziyang
    Wang, Weifeng
    Guangxue Xuebao/Acta Optica Sinica, 2024, 44 (24):
  • [38] Multiscale Semantic Guidance Network for Object Detection in VHR Remote Sensing Images
    Zhu, Shengyu
    Zhang, Junping
    Liang, Xuejian
    Guo, Qingle
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [39] Hybrid Network Model: TransConvNet for Oriented Object Detection in Remote Sensing Images
    Liu, Xulun
    Ma, Shiping
    He, Linyuan
    Wang, Chen
    Chen, Zhe
    REMOTE SENSING, 2022, 14 (09)
  • [40] CANet: Centerness-Aware Network for Object Detection in Remote Sensing Images
    Shi, Lukui
    Kuang, Linyi
    Xu, Xia
    Pan, Bin
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60