Decomposition methods for time-domain Maxwell's equations

被引:0
|
作者
Huang, Zhi-Xiang [1 ]
Sha, Wei E. I. [1 ]
Wu, Xian-Liang [1 ]
Chen, Ming-Sheng [1 ]
机构
[1] Anhui Univ, Minist Educ Hefei, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
关键词
decomposition; split operators; Hamiltonian function; Maxwell's equations;
D O I
10.1002/fld.1569
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Decomposition methods based on split operators are proposed for numerical integration of the time-domain Maxwell's equations for the first time. The methods are obtained by splitting the Hamiltonian function of Maxwell's equations into two analytically computable exponential sub-propagators in the time direction based on different order decomposition methods, and then the equations are evaluated in the spatial direction by the staggered fourth-order finite-difference approximations. The stability and numerical dispersion analysis for different order decomposition methods are also presented. The theoretical predictions are confirmed by our numerical results. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:1695 / 1704
页数:10
相关论文
共 50 条
  • [21] Domain decomposition methods for time-harmonic Maxwell equations:: Numerical results
    Rodríguez, AA
    Valli, A
    [J]. RECENT DEVELOPMENTS IN DOMAIN DECOMPOSITION METHODS, 2002, 23 : 157 - 171
  • [23] Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations
    Huang, Z. X.
    Wu, X. L.
    Sha, Wei E. I.
    Chen, M. S.
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (03) : 545 - 547
  • [24] A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwell’s Equations
    Chun-Hao Teng
    Bang-Yan Lin
    Hung-Chun Chang
    Hei-Chen Hsu
    Chien-Nan Lin
    Ko-An Feng
    [J]. Journal of Scientific Computing, 2008, 36 : 351 - 390
  • [25] Analysis of time-domain Maxwell's equations for 3-D cavities
    Van, T
    Wood, A
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 16 (2-3) : 211 - 228
  • [26] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [27] Time-Domain Simulations of the Nonlinear Maxwell Equations Using Operator-Exponential Methods
    Pototschnig, Martin
    Niegemann, Jens
    Tkeshelashvili, Lasha
    Busch, Kurt
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (02) : 475 - 483
  • [28] A Legendre pseudospectral penalty scheme for solving time-domain Maxwell's equations
    Teng, Chun-Hao
    Lin, Bang-Yan
    Chang, Hung-Chun
    Hsu, Hei-Chen
    Lin, Chien-Nan
    Feng, Ko-An
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2008, 36 (03) : 351 - 390
  • [29] Efficient mixed finite elements for the lossy Maxwell's equations in time-domain
    Cohen, G
    Ferrieres, X
    Monk, P
    Pernet, S
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC), VOLS 1 AND 2, SYMPOSIUM RECORD, 2003, : 788 - 793
  • [30] Unconditionally stable meshless integration of time-domain Maxwell's curl equations
    Ala, Guido
    Francomano, Elisa
    Ganci, Salvatore
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 255 : 157 - 164