On Ramanujan's Cubic Composition Formula

被引:0
|
作者
Ovsienko, Valentin [1 ,2 ]
机构
[1] Ctr Natl Rech Sci, Lab Math Reims, UMR9008, Moulin Housse BP 1039, F-51687 Reims 2, France
[2] Univ Reims, UFR Sci Exactes & Nat, Moulin Housse BP 1039, F-51687 Reims 2, France
来源
MATHEMATICAL INTELLIGENCER | 2022年 / 44卷 / 03期
关键词
D O I
10.1007/s00283-021-10148-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:212 / 214
页数:3
相关论文
共 50 条
  • [31] NEW IDENTITIES FOR RAMANUJAN'S CUBIC CONTINUED FRACTION
    Naika, M. S. Mahadeva
    Chandankumar, S.
    Bairy, K. Sushan
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 46 (01) : 29 - 44
  • [32] Remarks on a formula of Ramanujan
    Chirre, Andres
    Gonek, Steven M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [33] On a remarkable formula of Ramanujan
    Debraj Chakrabarti
    Gopala Krishna Srinivasan
    Archiv der Mathematik, 2012, 99 : 125 - 135
  • [34] Explicit Evaluation Formula for Ramanujan’s Singular Moduli and Ramanujan–Selberg Continued Fractions
    D. J. Prabhakaran
    K. Ranjithkumar
    Mathematical Notes, 2021, 110 : 363 - 374
  • [35] ON RAMANUJAN'S CUBIC CONTINUED FRACTION AS A MODULAR FUNCTION
    Cho, Bumkyu
    Koo, Ja Kyung
    Park, Yoon Kyung
    TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (04) : 579 - 603
  • [36] Ramanujan's cubic transformation and generalized modular equation
    Wang MiaoKun
    Chu YuMing
    Song YingQing
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (11) : 2387 - 2404
  • [37] APPLICATION OF FORMULA OF RAMANUJAN
    FOSTER, JH
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (02): : 209 - &
  • [38] On Ramanujan’s large argument formula for the Gamma function
    Cristinel Mortici
    The Ramanujan Journal, 2011, 26
  • [39] ASYMPTOTIC FORMULA OF RAMANUJAN
    SURYANARAYANA, D
    RAO, RSRC
    MATHEMATICA SCANDINAVICA, 1973, 32 (02) : 258 - 264
  • [40] A GENERALIZATION OF A FORMULA OF RAMANUJAN
    TODOROV, PG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (01) : 22 - 29