Machine learning using genetic and clinical data identifies a signature that robustly predicts methotrexate response in rheumatoid arthritis

被引:6
|
作者
Lim, Lee Jin [1 ]
Lim, Ashley J. W. [1 ]
Ooi, Brandon N. S. [1 ]
Tan, Justina Wei Lynn [2 ]
Koh, Ee Tzun [2 ]
Group, Ttsh Rheumatoid Arthritis Study
Chong, Samuel S. [3 ]
Khor, Chiea Chuen [4 ]
Tucker-Kellogg, Lisa [5 ,6 ]
Lee, Caroline G. [1 ,7 ,8 ,9 ]
Leong, Khai Pang [2 ,10 ]
机构
[1] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore
[2] Tan Tock Seng Hosp, Dept Rheumatol Allergy & Immunol, 11 Jln Tan Tock Seng, Singapore 308433, Singapore
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Pediat, Singapore, Singapore
[4] Genome Inst Singapore, Div Human Genet, Singapore, Singapore
[5] Duke NUS Med Sch, Ctr Computat Biol, Singapore, Singapore
[6] Duke NUS Med Sch, Canc & Stem Cell Biol, Singapore, Singapore
[7] Natl Canc Ctr Singapore, Humphrey Oei Inst Canc Res, Div Cellular & Mol Res, Singapore, Singapore
[8] Duke NUS Med Sch, Singapore, Singapore
[9] Natl Univ Singapore, NUS Grad Sch, Singapore, Singapore
[10] Tan Tock Seng Hosp, Clin Res & Innovat Off, Singapore, Singapore
基金
英国医学研究理事会;
关键词
rheumatoid arthritis; methotrexate; genetic polymorphism; machine learning; feature selection; FUNCTIONAL ANNOTATION; AMERICAN-COLLEGE; RHEUMATOLOGY/EUROPEAN LEAGUE; DISEASE-ACTIVITY; SCORES; PHARMACOGENETICS; CLASSIFICATION; COMBINATION; SNPNEXUS; CRITERIA;
D O I
10.1093/rheumatology/keac032
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective To develop a hypothesis-free model that best predicts response to MTX drug in RA patients utilizing biologically meaningful genetic feature selection of potentially functional single nucleotide polymorphisms (pfSNPs) through robust machine learning (ML) feature selection methods. Methods MTX-treated RA patients with known response were divided in a 4:1 ratio into training and test sets. From the patients' exomes, potential features for classifier prediction were identified from pfSNPs and non-genetic factors through ML using recursive feature elimination with cross-validation incorporating the random forest classifier. Feature selection was repeated on random subsets of the training cohort, and consensus features were assembled into the final feature set. This feature set was evaluated for predictive potential using six ML classifiers, first by cross-validation within the training set, and finally by analysing its performance with the unseen test set. Results The final feature set contains 56 pfSNPs and five non-genetic factors. The majority of these pfSNPs are located in pathways related to RA pathogenesis or MTX action and are predicted to modulate gene expression. When used for training in six ML classifiers, performance was good in both the training set (area under the curve: 0.855-0.916; sensitivity: 0.715-0.892; and specificity: 0.733-0.862) and the unseen test set (area under the curve: 0.751-0.826; sensitivity: 0.581-0.839; and specificity: 0.641-0.923). Conclusion Sensitive and specific predictors of MTX response in RA patients were identified in this study through a novel strategy combining biologically meaningful and machine learning feature selection and training. These predictors may facilitate better treatment decision-making in RA management.
引用
收藏
页码:4175 / 4186
页数:12
相关论文
共 50 条
  • [1] Clinical predictors of response to methotrexate in patients with rheumatoid arthritis: a machine learning approach using clinical trial data
    Duong, Stephanie Q.
    Crowson, Cynthia S.
    Athreya, Arjun
    Atkinson, Elizabeth J.
    Davis, John M.
    Warrington, Kenneth J.
    Matteson, Eric L.
    Weinshilboum, Richard
    Wang, Liewei
    Myasoedova, Elena
    ARTHRITIS RESEARCH & THERAPY, 2022, 24 (01)
  • [2] Clinical predictors of response to methotrexate in patients with rheumatoid arthritis: a machine learning approach using clinical trial data
    Stephanie Q. Duong
    Cynthia S. Crowson
    Arjun Athreya
    Elizabeth J. Atkinson
    John M. Davis
    Kenneth J. Warrington
    Eric L. Matteson
    Richard Weinshilboum
    Liewei Wang
    Elena Myasoedova
    Arthritis Research & Therapy, 24
  • [3] PREDICTION OF RESPONSE TO METHOTREXATE IN PATIENTS WITH RHEUMATOID ARTHRITIS: A MACHINE LEARNING APPROACH USING CLINICAL TRIAL DATA
    Duong, S.
    Crowson, C. S.
    Athreya, A.
    Atkinson, E.
    Davis, J. M., III
    Warrington, K. J.
    Matteson, E.
    Weinshilboum, R.
    Wang, L.
    Myasoedova, E.
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 : 513 - 514
  • [4] Machine Learning Identifies Biomarker of Non-Response to Methotrexate in Rheumatoid Arthritis
    Bouget, Vincent
    Duquesne, Julien
    Cournede, Paul-Henry
    Fautrel, Bruno
    Guillemin, Francis
    de Jong, Pascal
    Heutz, Judith
    Verstappen, Marloes
    van der Helm-van Mil, Annette
    Mariette, Xavier
    Bitoun, Samuel
    ARTHRITIS & RHEUMATOLOGY, 2022, 74 : 3187 - 3189
  • [5] Machine learning identifies a profile of inadequate responder to methotrexate in rheumatoid arthritis
    Duquesne, Julien
    Bouget, Vincent
    Cournede, Paul Henry
    Fautrel, Bruno
    Guillemin, Francis
    de Jong, Pascal H. P.
    Heutz, Judith W.
    Verstappen, Marloes
    van der Helm-van Mil, Annette H. M.
    Mariette, Xavier
    Bitoun, Samuel
    RHEUMATOLOGY, 2023, 62 (07) : 2402 - 2409
  • [6] MACHINE LEARNING PREDICTS RESPONSE TO METHOTREXATE IN RHEUMATOID ARTHRITIS: RESULTS ON THE ESPOIR, T-REACH AND LEIDEN COHORTS
    Bouget, V.
    Duquesne, J.
    Cournede, P. H.
    Fautrel, B.
    Guillemin, F.
    De Jong, P.
    Heutz, J.
    Van der Helm-van Mil, A.
    Verstappen, M.
    Bitoun, S.
    Mariette, X.
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 : 535 - 535
  • [7] Functional coding haplotypes and machine-learning feature elimination identifies predictors of Methotrexate Response in Rheumatoid Arthritis patients
    Lim, Ashley J. W.
    Lim, Lee Jin
    Ooi, Brandon N. S.
    Koh, Ee Tzun
    Tan, Justina Wei Lynn
    Chong, Samuel S.
    Khor, Chiea Chuen
    Tucker-Kellogg, Lisa
    Leong, Khai Pang
    Lee, Caroline G.
    EBIOMEDICINE, 2022, 75
  • [8] Molecular signature of methotrexate response among rheumatoid arthritis patients
    Brynedal, Boel
    Yoosuf, Niyaz
    Ulfarsdottir, Tinna Bjorg
    Ziemek, Daniel
    Maciejewski, Mateusz
    Folkersen, Lasse
    Westerlind, Helga
    Mueller, Malin
    Sahlstrom, Peter
    Jelinsky, Scott A.
    Hensvold, Aase
    Padyukov, Leonid
    Pomiano, Nancy Vivar
    Catrina, Anca
    Klareskog, Lars
    Berg, Louise
    FRONTIERS IN MEDICINE, 2023, 10
  • [9] Identification of a Rule to Predict Response to Sarilumab in Patients with Rheumatoid Arthritis Using Machine Learning and Clinical Trial Data
    Rehberg, Markus
    Giegerich, Clemens
    Praestgaard, Amy
    van Hoogstraten, Hubert
    Iglesias-Rodriguez, Melitza
    Curtis, Jeffrey R.
    Gottenberg, Jacques-Eric
    Schwarting, Andreas
    Castaneda, Santos
    Roth, Andrea Rubbert
    Choy, Ernest
    ARTHRITIS & RHEUMATOLOGY, 2020, 72
  • [10] Identification of a Rule to Predict Response to Sarilumab in Patients with Rheumatoid Arthritis Using Machine Learning and Clinical Trial Data
    Rehberg, Markus
    Giegerich, Clemens
    Praestgaard, Amy
    van Hoogstraten, Hubert
    Iglesias-Rodriguez, Melitza
    Curtis, Jeffrey R.
    Gottenberg, Jacques-Eric
    Schwarting, Andreas
    Castaneda, Santos
    Rubbert-Roth, Andrea
    Choy, Ernest H. S.
    RHEUMATOLOGY AND THERAPY, 2021, 8 (04) : 1661 - 1675