Adaptive penalty likelihood for reconstruction of multidimensional confocal microscopy images

被引:4
|
作者
Zhu, D [1 ]
Razaz, M [1 ]
Lee, R [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Wolfson Bioinformat Res Lab, Royal Soc, Norwich NR4 7TJ, Norfolk, England
关键词
penalty likelihood; deconvolution; confocal microscopy;
D O I
10.1016/j.compmedimag.2004.12.004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper we devise a penalty likelihood with noise constraints method to restore 2D and 3D confocal microscope images. Regularization is a commonly used technique in image restoration to balance restored image quality and noise suppression, but despite this noise is usually amplified. Taking into account common confocal imaging system degradation, we develop an algorithm by using a gradient descent method (PLGDA) to approach the minimum solution of the penalty likelihood equation. A Lagrange parameter controls the balance between the penalty and likelihood terms and is estimated using an adaptive method. We show that the a priori information is key to the regularization and Lagrange parameter estimation. The convergence characteristics are analysed and discussed. PLGDA and a traditional maximum likelihood expectation maximization are used to restore 2D and 3D confocal images. The point spread function (PSF), used to restore the data is collected from an experiment and modelled by bi-cubic splines to give an accurate noise free representation. Our experimental results show that the restored images are significantly improved by PLGDA. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:319 / 331
页数:13
相关论文
共 50 条
  • [31] Segmentation and counting of FISH signals in confocal microscopy images
    Adiga, PSU
    Chaudhuri, BB
    MICRON, 2000, 31 (01) : 5 - 15
  • [32] A new method for depth profiling reconstruction in confocal microscopy
    Esposito, Rosario
    Scherillo, Giuseppe
    Mensitieri, Giuseppe
    OPTICS AND LASERS IN ENGINEERING, 2018, 104 : 285 - 290
  • [33] Automatic noise quantification for confocal fluorescence microscopy images
    Paul, Perrine
    Duessmann, Heiko
    Bernas, Tytus
    Huber, Heinrich
    Kalamatianos, Dimitrios
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2010, 34 (06) : 426 - 434
  • [34] INTRODUCTION TO CONFOCAL MICROSCOPY AND 3-DIMENSIONAL RECONSTRUCTION
    WRIGHT, SJ
    CENTONZE, VE
    STRICKER, SA
    DEVRIES, PJ
    PADDOCK, SW
    SCHATTEN, G
    METHODS IN CELL BIOLOGY, VOL 38: CELL BIOLOGICAL APPLICATIONS OF CONFOCAL MICROSCOPY, 1993, 38 : 1 - 45
  • [35] Statistical Modeling and Classification of Reflectance Confocal Microscopy Images
    Halimi, Abdelghafour
    Batatia, Hadj
    Le Digabel, Jimmy
    Josse, Gwendal
    Tourneret, Jean-Yves
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [36] AXON EXTRACTION FROM FLUORESCENT CONFOCAL MICROSCOPY IMAGES
    Mottini, Alejandro
    Descombes, Xavier
    Besse, Florence
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 764 - 767
  • [37] Comparative Analysis of Smoothing Filters in Confocal Microscopy Images
    Forero, Manuel G.
    Pena-Ambrosio, Reynel
    Sanchez-Tarquino, Jaime
    Restrepo-Taborda, Camilo
    Rojas-Rodriguez, Diana
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLII, 2019, 11137
  • [38] Differential diagnosis of linear corneal images on confocal microscopy
    Chiou, AGY
    Kaufman, SC
    Beuerman, RW
    Ohta, T
    Kaufman, HE
    CORNEA, 1999, 18 (01) : 63 - 66
  • [39] Detection of the optimal neuron traces in confocal microscopy images
    Vasilkoski, Zlatko
    Stepanyants, Armen
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 178 (01) : 197 - 204
  • [40] Quantitative analysis of in vivo confocal microscopy images: A review
    Patel, Dipika V.
    McGhee, Charles N.
    SURVEY OF OPHTHALMOLOGY, 2013, 58 (05) : 466 - 475