Statistical Analysis of Poisson Conditionally Nonlinear Autoregressive Time Series by Frequencies-Based Estimators

被引:2
|
作者
Kharin, Yu [1 ]
Kislach, M. [1 ]
机构
[1] Belarusian State Univ, Res Inst Appl Problems Math & Informat, Minsk 220030, BELARUS
关键词
statistical forecasting; integer-valued time series; Poisson distribution; Markov chain; frequencies-based estimators; ROBUSTNESS; PARAMETERS; MODELS;
D O I
10.1134/S1054661820010083
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Poisson conditionally nonlinear autoregressive model is proposed for integer-valued time series. Frequencies-based estimators (FBE) for model parameters, statistical forecasting statistics, and statistical tests for this model are constructed; their performance is analyzed theoretically and by computer experiments on simulated and real data.
引用
收藏
页码:22 / 26
页数:5
相关论文
共 50 条
  • [31] HIGHER-ORDER RESIDUAL ANALYSIS FOR NONLINEAR TIME-SERIES WITH AUTOREGRESSIVE CORRELATION STRUCTURES
    LAWRANCE, AJ
    LEWIS, PAW
    INTERNATIONAL STATISTICAL REVIEW, 1987, 55 (01) : 21 - 35
  • [32] Robust control chart for nonlinear conditionally heteroscedastic time series based on Huber support vector regression
    Kim, Chang Kyeom
    Yoon, Min Hyeok
    Lee, Sangyeol
    PLOS ONE, 2024, 19 (02):
  • [33] TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis
    Tsai, L. C.
    Macalalad, Ernest P.
    Liu, C. H.
    RADIO SCIENCE, 2014, 49 (10) : 977 - 986
  • [34] Autoregressive spectral analysis based on statistical autocorrelation
    Hu, Minghui
    Shao, Huihe
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 376 : 139 - 146
  • [35] Preliminary test of fit in a general class of conditionally heteroscedastic nonlinear time series
    Baek, J. S.
    Park, J. A.
    Hwang, S. Y.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (05) : 763 - 781
  • [36] Modeling a nonlinear process using the exponential autoregressive time series model
    Xu, Huan
    Ding, Feng
    Yang, Erfu
    NONLINEAR DYNAMICS, 2019, 95 (03) : 2079 - 2092
  • [37] NONMRAMETRIC IDENTIFICATION FOR NONLINEAR AUTOREGRESSIVE TIME SERIES MODELS:CONVERGENCE RATES
    LU ZUDI
    CHENG PING(Institute of Systems Science
    Chinese Annals of Mathematics,Series B, 1999, (02) : 173 - 176
  • [38] Statistical process monitoring for vector autoregressive time series based on location-scale CUSUM method
    Lee, Sangjo
    Lee, Sangyeol
    QUALITY ENGINEERING, 2023, 35 (03) : 493 - 518
  • [39] Autoregressive nonlinear time-series modeling of traffic fatalities in Europe
    Yannis G.
    Antoniou C.
    Papadimitriou E.
    European Transport Research Review, 2011, 3 (3) : 113 - 127
  • [40] Autoregressive tree models for time-series analysis
    Meek, C
    Chickering, DM
    Heckerman, D
    PROCEEDINGS OF THE SECOND SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2002, : 229 - 244