On maximum likelihood estimation in parametric regression with missing covariates

被引:15
|
作者
Zhang, ZW [1 ]
Rockette, HE [1 ]
机构
[1] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
关键词
parametric regression; missing covariates; missing at random; semiparametric likelihood; consistency;
D O I
10.1016/j.jspi.2004.04.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider parametric regression problems with some covariates missing at random. It is shown that the regression parameter remains identifiable under natural conditions. When the always observed covariates are discrete, we propose a semiparametric maximum likelihood method, which does not require parametric specification of the missing data mechanism or the covariate distribution. The global maximum likelihood estimator (MLE), which maximizes the likelihood over the whole parameter set, is shown to exist under simple conditions. For ease of computation, we also consider a restricted MLE which maximizes the likelihood over covariate distributions supported by the observed values. Under regularity conditions, the two MLEs are asymptotically equivalent and strongly consistent for a class of topologies on the parameter set. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:206 / 223
页数:18
相关论文
共 50 条
  • [31] Estimation in zero-inflated binomial regression with missing covariates
    Diallo, Alpha Oumar
    Diop, Aliou
    Dupuy, Jean-Francois
    [J]. STATISTICS, 2019, 53 (04) : 839 - 865
  • [32] Pseudo-partial likelihood estimators for the Cox regression model with missing covariates
    Luo, Xiaodong
    Tsai, Wei Yann
    Xu, Qiang
    [J]. BIOMETRIKA, 2009, 96 (03) : 617 - 633
  • [33] A Profile Conditional Likelihood Approach for the Semiparametric Transformation Regression Model with Missing Covariates
    Hua Yun Chen
    Roderick J. Little
    [J]. Lifetime Data Analysis, 2001, 7 : 207 - 224
  • [34] Maximum likelihood estimation in logistic regression models with a diverging number of covariates (vol 6, pg 1838, 2012)
    Liang, Hua
    Du, Pang
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 948 - 949
  • [35] A profile conditional likelihood approach for the semiparametric transformation regression model with missing covariates
    Chen, HY
    Little, RJ
    [J]. LIFETIME DATA ANALYSIS, 2001, 7 (03) : 207 - 224
  • [36] Maximum likelihood estimation in graphical models with missing values
    Didelez, V
    Pigeot, I
    [J]. BIOMETRIKA, 1998, 85 (04) : 960 - 966
  • [37] Maximum likelihood estimation of sparse networks with missing observations
    Gaucher, Solenne
    Klopp, Olga
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 215 : 299 - 329
  • [38] Semiparametric maximum likelihood estimation with data missing not at random
    Morikawa, Kosuke
    Kim, Jae Kwang
    Kano, Yutaka
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 393 - 409
  • [39] Semi-parametric regression when some (expensive) covariates are missing by design
    Göran Kauermann
    Mehboob Ali
    [J]. Statistical Papers, 2021, 62 : 1675 - 1696
  • [40] Semiparametric approach for non-monotone missing covariates in a parametric regression model
    Sinha, Samiran
    Saha, Krishna K.
    Wang, Suojin
    [J]. BIOMETRICS, 2014, 70 (02) : 299 - 311