A Ferroelectric FET-Based Processing-in-Memory Architecture for DNN Acceleration

被引:42
|
作者
Long, Yun [1 ]
Kim, Daehyun [1 ]
Lee, Edward [1 ]
Saha, Priyabrata [1 ]
Mudassar, Burhan Ahmad [1 ]
She, Xueyuan [1 ]
Khan, Asif Islam [1 ]
Mukhopadhyay, Saibal [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Virtual machine monitors; Engines; Clocks; Transistors; Logic gates; Computer architecture; Random access memory; Deep neural network (DNN); ferroelectric FET (FeFET); processing-in-memory (PIM);
D O I
10.1109/JXCDC.2019.2923745
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a ferroelectric FET (FeFET)-based processing-in-memory (PIM) architecture to accelerate the inference of deep neural networks (DNNs). We propose a digital in-memory vector-matrix multiplication (VMM) engine design utilizing the FeFET crossbar to enable bit-parallel computation and eliminate analog-to-digital conversion in prior mixed-signal PIM designs. A dedicated hierarchical network-on-chip (H-NoC) is developed for input broadcasting and on-the-fly partial results processing, reducing the data transmission volume and latency. Simulations in 28-nm CMOS technology show 115xand 6.3xhigher computing efficiency (GOPs/W) over desktop GPU (NvidiaGTX1080Ti) and resistive random access memory (ReRAM)-based design, respectively.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [1] FELIX: A Ferroelectric FET Based Low Power Mixed-Signal In-Memory Architecture for DNN Acceleration
    Soliman, Taha
    Laleni, Nellie
    Kirchner, Tobias
    Mueller, Franz
    Shrivastava, Ashish
    Kaempfe, Thomas
    Guntoro, Andre
    Wehn, Norbert
    [J]. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (06)
  • [2] RETRANSFORMER: ReRAM-based Processing-in-Memory Architecture for Transformer Acceleration
    Yang, Xiaoxuan
    Yan, Bonan
    Li, Hai
    Chen, Yiran
    [J]. 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,
  • [3] ReRAM-Based Processing-in-Memory Architecture for Recurrent Neural Network Acceleration
    Long, Yun
    Na, Taesik
    Mukhopadhyay, Saibal
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (12) : 2781 - 2794
  • [4] VSPIM: SRAM Processing-in-Memory DNN Acceleration via Vector-Scalar Operations
    Nie, Chen
    Tang, Chenyu
    Lin, Jie
    Hu, Huan
    Lv, Chenyang
    Cao, Ting
    Zhang, Weifeng
    Jiang, Li
    Liang, Xiaoyao
    Qian, Weikang
    Sun, Yanan
    He, Zhezhi
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (10) : 2378 - 2390
  • [5] Study on Processing-in-Memory Technology based on Dataflow Architecture
    Choi, Kyu Hyun
    Hwang, Taeho
    [J]. 2022 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2022,
  • [6] A DNN Compression Framework for SOT-MRAM-based Processing-In-Memory Engine
    Yuan, Geng
    Ma, Xiaolong
    Lin, Sheng
    Li, Zhengang
    Deng, Jieren
    Ding, Caiwen
    [J]. 2020 IEEE 33RD INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2020, : 37 - 42
  • [7] PIM-DH: Re RAM-based Processing-in-Memory Architecture for Deep Hashing Acceleration
    Liu, Fangxin
    Zhao, Wenbo
    Chen, Yongbiao
    Wang, Zongwu
    He, Zhezhi
    Yang, Rui
    Tang, Qidong
    Yang, Tao
    Zhuo, Cheng
    Jiang, Li
    [J]. PROCEEDINGS OF THE 59TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC 2022, 2022, : 1087 - 1092
  • [8] ReRAM-based Processing-in-Memory Architecture for Blockchain Platforms
    Wang, Fang
    Shen, Zhaoyan
    Han, Lei
    Shao, Zili
    [J]. 24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019), 2019, : 615 - 620
  • [9] PIMCH: Cooperative Memory Prefetching in Processing-In-Memory Architecture
    Xui, Sheng
    Wang, Ying
    Han, Yinhe
    Li, Xiaowei
    [J]. 2018 23RD ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2018, : 209 - 214
  • [10] Comparative Analysis and Energy-Efficient Write Scheme of Ferroelectric FET-Based Memory Cells
    Ko, Dong Han
    Oh, Tae Woo
    Lim, Sehee
    Kim, Se Keon
    Jung, Seong-Ook
    [J]. IEEE ACCESS, 2021, 9 : 127895 - 127905