Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment

被引:78
|
作者
Sepaskhah, A. R. [1 ]
Barzegar, M. [1 ]
机构
[1] Shiraz Univ, Irrigat Dept, Shiraz, Iran
关键词
Clinoptilolite; Nitrogen recovery; Nitrogen-use efficiency; Rice; Zeolite; Water productivity; USE EFFICIENCY; PHOSPHATE ROCK; NITRATE; AMMONIUM;
D O I
10.1016/j.agwat.2010.07.013
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Water scarcity and soil nitrogen (N) loss are important limitations for agricultural production in semi-and region especially for rice production Zeolite (Z) as a soil conditioner can be used to retrain water and nitrogen in near-surface soil layer in lowland rice production system The objectives of this study were to investigate the effects of different application rates of natural zeolite (clinoptilolite) and nitrogen on rice yield yield components soil nitrogen water use water productivity in a silty clay soil in 2004 and 2005 Zeolite was only applied in the first year In order to study the long-term and continuous effect of zeolite on the objectives of the study no zeolite was applied in the second year and the study was conducted on the same land as the first year Zeolite and N were applied at rates of 0 2 4 and 8 t ha(-1) and 0 20 40 and 80 kg ha-1 respectively in 2004 In 2005 each plot received the same amount of N as received in 2004 It is concluded that by decreasing N application rates higher Z application rate is needed to improve grain yield Highest grain yield was obtained at N application rate of 80 kg ha-1 and Z application rate of 4 t ha-1 Higher grain yield was mostly attributed to lower unfilled grain percentage and higher 1000-grain weight that were a result of higher N application rate and N retention in soil due to Z application Nitrogen and Z applications resulted in higher grain protein contents and nitrogen recovery efficiency (NRE) Based on these results and due to higher N retention in soil under Z application Improved grain yield quality nitrogen-use efficiency (NUE) and nitrogen recovery efficiency (NRE) could be obtained at Z application rate of 8 t ha(-1) and N application rate of 80 kg ha-1 or more However this was not satisfied for NUE Moreover it is found that at higher N application rates lower Z application rates are needed to effectively retain soil residual mineral nitrogen Furthermore at N application rates of 80 kg ha-1 or more Z application increased soil water retention and resulted in lower seasonal water use and higher water productivity In general it was concluded that the effect of Z application in retaining soil N was also effective in the second year (c) 2010 Elsevier B V All rights reserved
引用
收藏
页码:38 / 44
页数:7
相关论文
共 50 条
  • [11] Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment
    Singh, Yudhveer
    Rao, Sajjan Singh
    Regar, Panna Lal
    AGRICULTURAL WATER MANAGEMENT, 2010, 97 (07) : 965 - 970
  • [12] Response of giant reed (Arundo donax L.) to nitrogen fertilization and soil water availability in semi-arid Mediterranean environment
    Cosentino, Salvatore Luciano
    Scordia, Danilo
    Sanzone, Emanuele
    Testa, Giorgio
    Copani, Venera
    EUROPEAN JOURNAL OF AGRONOMY, 2014, 60 : 22 - 32
  • [13] Nitrogen use and rice yield formation response to zeolite and nitrogen coupling effects: Enhancement in nitrogen use efficiency
    Wu, Qi
    Xia, Guimin
    Chen, Taotao
    Wang, Xuan
    Chi, Daocai
    Sun, Dehuan
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2016, 16 (04): : 999 - 1009
  • [14] RESPONSE OF SEMI-ARID GRASSLAND SITES TO NITROGEN-FERTILIZATION .1. PLANT-GROWTH AND WATER-USE
    POWER, JF
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1980, 44 (03) : 545 - 550
  • [15] Nitrogen fertilization of barley under semi-arid rainfed conditions
    CanteroMartinez, C
    Villar, JM
    Romagosa, I
    Fereres, E
    EUROPEAN JOURNAL OF AGRONOMY, 1995, 4 (03) : 309 - 316
  • [16] Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland
    Liu, Jianliang
    Zhu, Lin
    Luo, Shasha
    Bu, Lingduo
    Chen, Xinping
    Yue, Shanchao
    Li, Shiqing
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2014, 188 : 20 - 28
  • [17] Effect of deficit irrigation and nitrogen levels on water productivity and nitrogen use efficiency of wheat (Triticum aestivum) in a semi-arid environment
    Pradhan, S.
    Chopra, U. K.
    Bandyopadhayay, K. K.
    Singh, R.
    Jain, A. K.
    Chand, I.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 84 (07): : 887 - 891
  • [18] Reducing fertilization with high planting density increases maize yield stability and nitrogen use efficiency in semi-arid areas
    Wu, Xiaorong
    Li, Zhimin
    Li, Wenjing
    Xue, Xuanke
    Yang, Linchuan
    Xu, Jing
    Yang, Baoping
    Ding, Ruixia
    Jia, Zhikuan
    Zhang, Xudong
    Han, Qingfang
    EUROPEAN JOURNAL OF AGRONOMY, 2024, 159
  • [19] Effects of Nitrogen Application Rates on Rice Grain Yield, Nitrogen-Use Efficiency, and Water Quality in Paddy Field
    Dong, Zuozhen
    Wu, Lianghuan
    Chai, Jie
    Zhu, Yuanhong
    Chen, Yuanli
    Zhu, Yuezhong
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2015, 46 (12) : 1579 - 1594
  • [20] MAIZE GROWTH, YIELD FORMATION AND WATER-NITROGEN USAGE IN RESPONSE TO VARIED IRRIGATION AND NITROGEN SUPPLY UNDER SEMI-ARID CLIMATE
    Ashraf, Umair
    Salim, Mazhar Noor
    Sher, Alam
    Sabir, Sabeeh-ur-Rasool
    Khan, Aqil
    Pan, Shenggang
    Tang, Xiangru
    TURKISH JOURNAL OF FIELD CROPS, 2016, 21 (01) : 88 - 96