Realistic Assessment of Parameter Uncertainty in Dynamic Parameter Estimation

被引:0
|
作者
Shacham, Mordechai [1 ]
Brauner, Neima [2 ]
机构
[1] Ben Gurion Univ Negev, Chem Eng Dept, IL-84105 Beer Sheva, Israel
[2] Tel Aviv Univ, Sch Engn, IL-69978 Tel Aviv, Israel
关键词
model identification; parameter estimation; stepwise regression; MODEL; IDENTIFIABILITY;
D O I
10.1016/B978-0-444-63965-3.50049-0
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Assessment of the uncertainty in parameter estimation is essential for confidence in subsequent use of the dynamic model with the associated parameters. The assessment of the parameter uncertainty in highly nonlinear kinetic models is often a very difficult task. In this paper a new method for parameter uncertainty assessment is presented and its use is demonstrated for a cellulose hydrolysis kinetic model. The new method involves generation of pseudo-experimental data using a known set of "reference" parameter values. Stepwise regression is used in an attempt to generate alternative sets of parameter values that yield results with precision similar to the reference set. The difference between the individual parameter values in the separate sets represents the uncertainty of these values. High uncertainty level indicates that no physical meaning can be attributed to the predicted parameter values. Application of the proposed method is therefore recommended prior to applying the individual parameter values in other models.
引用
收藏
页码:283 / 288
页数:6
相关论文
共 50 条
  • [21] Assessment of uncertainty in parameter evaluation and prediction
    Meinrath, G
    Ekberg, C
    Landgren, A
    Liljenzin, JO
    TALANTA, 2000, 51 (02) : 231 - 246
  • [22] Simultaneous segmentation, kinetic parameter estimation, and uncertainty visualization of dynamic PET images
    Saad, Ahmed
    Smith, Ben
    Hamarneh, Ghassan
    Moeller, Torsten
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 726 - +
  • [23] Identification of parameter correlations for parameter estimation in dynamic biological models
    Li, Pu
    Vu, Quoc Dong
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [24] Lens Parameter Estimation for Realistic Depth of Field Modeling
    Piche-Meunier, Dominique
    Hold-Geoffroy, Yannick
    Zhang, Jianming
    Lalonde, Jean-Francois
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 499 - 508
  • [25] Approximation of parameter uncertainty in nonlinear optimization-based parameter estimation schemes
    Witkowski, W.R.
    Allen, J.J.
    AIAA journal, 1993, 31 (05): : 947 - 950
  • [26] MODELING UNCERTAINTY IN PARAMETER-ESTIMATION - COMMENTS
    PARRY, GW
    NUCLEAR SAFETY, 1986, 27 (02): : 212 - 214
  • [27] Interval parameter estimation under model uncertainty
    Nazin, SA
    Polyak, BT
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (02) : 225 - 237
  • [28] Parameter estimation and uncertainty analysis for a watershed model
    Gallagher, Mark
    Doherty, John
    ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (07) : 1000 - 1020
  • [29] Parameter estimation and uncertainty analysis in hydrological modeling
    Herrera, Paulo A.
    Marazuela, Miguel Angel
    Hofmann, Thilo
    WILEY INTERDISCIPLINARY REVIEWS-WATER, 2022, 9 (01):
  • [30] PARAMETER ESTIMATION AND UNCERTAINTY QUANTIFICATION FOR AN EPIDEMIC MODEL
    Capaldi, Alex
    Behrend, Samuel
    Berman, Benjamin
    Smith, Jason
    Wright, Justin
    Lloyd, Alun L.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2012, 9 (03) : 553 - 576