Computer vision algorithms acceleration using graphic processors NVIDIA CUDA

被引:12
|
作者
Afif, Mouna [1 ]
Said, Yahia [1 ,2 ]
Atri, Mohamed [3 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Lab Elect & Microelect, LR99ES30, Monastir 5000, Tunisia
[2] Northern Border Univ, Elect Engn Dept, Coll Engn, Ar Ar, Saudi Arabia
[3] King Khalid Univ, Coll Comp Sci, Abha, Saudi Arabia
关键词
Computer vision; Integral image; Prefix sum; Features extraction; GPU; NVIDIA CUDA; Image covariance; FEATURE-EXTRACTION;
D O I
10.1007/s10586-020-03090-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using graphic processing units (GPUs) in parallel with central processing unit in order to accelerate algorithms and applications demanding extensive computational resources has been a new trend used for the last few years. In this paper, we propose a GPU-accelerated method to parallelize different Computer vision tasks. We will report on parallelism and acceleration in computer vision applications, we provide an overview about the CUDA NVIDIA GPU programming language used. After that we will dive on GPU Architecture and acceleration used for time consuming optimization. We introduce a high-speed computer vision algorithm using graphic processing unit by using the NVIDIA's programming framework compute unified device architecture (CUDA). We realize high and significant accelerations for our computer vision algorithms and we demonstrate that using CUDA as a GPU programming language can improve Efficiency and speedups. Especially we demonstrate the efficiency of our implementations of our computer vision algorithms by speedups obtained for all our implementations especially for some tasks and for some image sizes that come up to 8061 and 5991 and 722 acceleration times.
引用
收藏
页码:3335 / 3347
页数:13
相关论文
共 50 条
  • [21] File compression with LZO algorithm using NVIDIA CUDA architecture
    Erdodi, L.
    2012 4TH IEEE INTERNATIONAL SYMPOSIUM ON LOGISTICS AND INDUSTRIAL INFORMATICS (LINDI), 2012, : 251 - 254
  • [22] Correlation analysis on GPU systems using NVIDIA’s CUDA
    Daniel Gembris
    Markus Neeb
    Markus Gipp
    Andreas Kugel
    Reinhard Männer
    Journal of Real-Time Image Processing, 2011, 6 : 275 - 280
  • [23] Correlation analysis on GPU systems using NVIDIA's CUDA
    Gembris, Daniel
    Neeb, Markus
    Gipp, Markus
    Kugel, Andreas
    Maenner, Reinhard
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2011, 6 (04) : 275 - 280
  • [24] Real Time Ultrasound Image Denoising Using NVIDIA CUDA
    Fredj, Amira Hadj
    Malek, Jihene
    2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2016, : 136 - 140
  • [25] Iterative Reconstruction for Transmission Tomography on GPU Using Nvidia CUDA
    Vintache D.
    Humbert B.
    Brasse D.
    Tsinghua Science and Technology, 2010, 15 (01) : 11 - 16
  • [26] Belief Propagation Implementation Using CUDA on an NVIDIA GTX 280
    Xu, Yanyan
    Chen, Hui
    Klette, Reinhard
    Liu, Jiaju
    Vaudrey, Tobi
    AI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5866 : 180 - +
  • [27] Using NVIDIA multicore graphics processors in image decoding
    Kozlov I.M.
    Kozlov, I.M., 1600, Izdatel'stvo Nauka (24): : 425 - 430
  • [28] Testing the speed of the FFT using the NVIDIA graphic cards
    Ulyanov, O. M.
    Plakhov, M. S.
    Shevtsova, A. I.
    Ulyanova, O. O.
    Skoryk, A. A.
    Tkachev, V. N.
    2015 INTERNATIONAL YOUNG SCIENTISTS FORUM ON APPLIED PHYSICS (YSF), 2015,
  • [29] Acceleration of moment method using CUDA
    Kiss, Imre
    Pavo, Jozsef
    Gyimothy, Szabolcs
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2011, 30 (06) : 1751 - 1762
  • [30] RadixBoost: A Hardware Acceleration Structure for Scalable Radix Sort on Graphic Processors
    Liu, Xingyu
    Li, Shikai
    Fang, Kuan
    Ni, Yufei
    Li, Zonghui
    Deng, Yangdong
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1174 - 1177