Computer vision algorithms acceleration using graphic processors NVIDIA CUDA

被引:12
|
作者
Afif, Mouna [1 ]
Said, Yahia [1 ,2 ]
Atri, Mohamed [3 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Lab Elect & Microelect, LR99ES30, Monastir 5000, Tunisia
[2] Northern Border Univ, Elect Engn Dept, Coll Engn, Ar Ar, Saudi Arabia
[3] King Khalid Univ, Coll Comp Sci, Abha, Saudi Arabia
关键词
Computer vision; Integral image; Prefix sum; Features extraction; GPU; NVIDIA CUDA; Image covariance; FEATURE-EXTRACTION;
D O I
10.1007/s10586-020-03090-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using graphic processing units (GPUs) in parallel with central processing unit in order to accelerate algorithms and applications demanding extensive computational resources has been a new trend used for the last few years. In this paper, we propose a GPU-accelerated method to parallelize different Computer vision tasks. We will report on parallelism and acceleration in computer vision applications, we provide an overview about the CUDA NVIDIA GPU programming language used. After that we will dive on GPU Architecture and acceleration used for time consuming optimization. We introduce a high-speed computer vision algorithm using graphic processing unit by using the NVIDIA's programming framework compute unified device architecture (CUDA). We realize high and significant accelerations for our computer vision algorithms and we demonstrate that using CUDA as a GPU programming language can improve Efficiency and speedups. Especially we demonstrate the efficiency of our implementations of our computer vision algorithms by speedups obtained for all our implementations especially for some tasks and for some image sizes that come up to 8061 and 5991 and 722 acceleration times.
引用
收藏
页码:3335 / 3347
页数:13
相关论文
共 50 条
  • [1] Computer vision algorithms acceleration using graphic processors NVIDIA CUDA
    Mouna Afif
    Yahia Said
    Mohamed Atri
    [J]. Cluster Computing, 2020, 23 : 3335 - 3347
  • [2] Abundance estimation algorithms using NVIDIA® CUDA™ technology
    Gonzalez, David
    Sanchez, Christian
    Veguilla, Ricardo
    Santiago, Nayda G.
    Rosario-Torres, Samuel
    Velez-Reyes, Miguel
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIV, 2008, 6966 : E9661 - E9661
  • [3] Low-Cost, High-Speed Computer Vision Using NVIDIA's CUDA Architecture
    Park, Seung In
    Ponce, Sean P.
    Huang, Jing
    Cao, Yong
    Quek, Francis
    [J]. 2008 37TH IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, 2008, : 137 - 143
  • [4] NEURAL NETWORK TRAINING ACCELERATION USING NVIDIA CUDA TECHNOLOGY FOR IMAGE RECOGNITION
    Fertsev, A. A.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (01): : 183 - 191
  • [5] Numerical Model of Shallow Water: The Use of NVIDIA CUDA Graphics Processors
    Dyakonova, Tatyana
    Khoperskov, Alexander
    Khrapov, Sergey
    [J]. SUPERCOMPUTING, RUSCDAYS 2016, 2016, 687 : 132 - 145
  • [6] USING OF OPPORTUNITIES OF GRAPHIC PROCESSORS FOR ACCELERATION OF SCIENTIFIC AND TECHNICAL CALCULATIONS
    Dudnik, V. A.
    Kudrjavtsev, V. I.
    Sereda, T. M.
    Us, S. A.
    Shestakov, M. V.
    [J]. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, (03): : 120 - 123
  • [7] Stream Processing of Multichannel EEG Data Using Parallel Computing Technology with NVIDIA CUDA Graphics Processors
    Grubov, V. V.
    Nedaivozov, V. O.
    [J]. TECHNICAL PHYSICS LETTERS, 2018, 44 (05) : 453 - 455
  • [8] Stream Processing of Multichannel EEG Data Using Parallel Computing Technology with NVIDIA CUDA Graphics Processors
    V. V. Grubov
    V. O. Nedaivozov
    [J]. Technical Physics Letters, 2018, 44 : 453 - 455
  • [9] Implementation of the r.cuda.los module in the open source GRASS GIS by using parallel computation on the NVIDIA CUDA graphic cards
    Osterman, Andrej
    [J]. ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2012, 79 (1-2): : 19 - 24
  • [10] Acceleration of acoustic emission signal processing algorithms using CUDA standard
    Riha, Lubomir
    Smid, Radislav
    [J]. COMPUTER STANDARDS & INTERFACES, 2011, 33 (04) : 389 - 400