Preliminary high-throughput phenotyping analysis in grapevines under drought

被引:3
|
作者
Briglia, Nunzio [1 ]
Nuzzo, Vitale [1 ]
Petrozza, Angelo [2 ]
Summerer, Stephan [2 ]
Cellini, Francesco [2 ]
Montanaro, Giuseppe [1 ]
机构
[1] Univ Basilicata, Dipartimento Culture Europee & Mediterraneo, Potenza, Italy
[2] ALSIA Ctr Ric Metapontum Agrobios, SS Jonica 106,Km 448,2, I-75010 Metaponto, MT, Italy
关键词
VITIS-VINIFERA L; WATER; STRESS;
D O I
10.1051/bioconf/20191302003
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
This study reports correlative information between leaf water potential (Psi), total leaf area of droughted grapevines (Vitis vinifera L.) and non-destructive image analysis techniques. Four groups of 20 potted vines each were subjected to various irrigation treatments restoring 100% (control), 75%, 50% and 25% of daily water consumption within a 22-day period of drought imposition. Leaf gas exchanges (Li-Cor 6400), Psi (Scholander chamber), fluorescence (PAM - 2500), RGB and NIR (Scanalyzer 3D system, LerrmaTec GmbH phenotyping platform) data were collected before and at the end of drought imposition. Values of Psi in severely stressed vines (25%) reached -1.2 MPa pre-dawn, in turn stomata' conductance and photosynthesis reached values as low as approx. 0.02 mol H2O m(-2) s(-1) and 1.0 mu mol CO2 m(-2) s(-1), respectively. The high-throughput analysis preliminarily revealed a correlation between Psi(stem) and NIR Color Class (R-2=0.80), and that plant leaf area might be accurately estimated through imagine analysis (R-2=0.90).
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Imaging for High-Throughput Phenotyping in Energy Sorghum
    Batz, Jose
    Mendez-Dorado, Mario A.
    Thomasson, J. Alex
    [J]. JOURNAL OF IMAGING, 2016, 2 (01)
  • [32] High-Throughput Phenotyping: Application in Maize Breeding
    Resende, Ewerton Lelys
    Bruzi, Adriano Teodoro
    Cardoso, Everton da Silva
    Carneiro, Vinicius Quintao
    Pereira de Souza, Vitorio Antonio
    Frois Correa Barros, Paulo Henrique
    Pereira, Raphael Rodrigues
    [J]. AGRIENGINEERING, 2024, 6 (02): : 1078 - 1092
  • [33] Initial steps for high-throughput phenotyping in vineyards
    Herzog, K.
    Roscher, R.
    Wieland, M.
    Kicherer, A.
    Laebe, T.
    Foerstner, W.
    Kuhlmann, H.
    Toepfer, R.
    [J]. VITIS, 2014, 53 (01) : 1 - 8
  • [34] High-throughput Phenotyping of Inflorescence Type in Hydrangea
    Alexander, Lisa
    Wu, Xingbo
    [J]. HORTSCIENCE, 2020, 55 (09) : S68 - S68
  • [35] Utilization of Spectral Indices for High-Throughput Phenotyping
    Tayade, Rupesh
    Yoon, Jungbeom
    Lay, Liny
    Khan, Abdul Latif
    Yoon, Youngnam
    Kim, Yoonha
    [J]. PLANTS-BASEL, 2022, 11 (13):
  • [36] High-throughput phenotyping for trait detection in vineyards
    Kicherer, Anna
    Herzog, Katja
    Toepfer, Reinhard
    [J]. 38TH WORLD CONGRESS OF VINE AND WINE (PART 1), 2015, 5
  • [37] Radiomics: a primer on high-throughput image phenotyping
    Lafata, Kyle J.
    Wang, Yuqi
    Konkel, Brandon
    Yin, Fang-Fang
    Bashir, Mustafa R.
    [J]. ABDOMINAL RADIOLOGY, 2022, 47 (09) : 2986 - 3002
  • [38] Plant chip for high-throughput phenotyping of Arabidopsis
    Jiang, Huawei
    Xu, Zhen
    Aluru, Maneesha R.
    Dong, Liang
    [J]. LAB ON A CHIP, 2014, 14 (07) : 1281 - 1293
  • [39] High-throughput plant phenotyping: a role for metabolomics?
    Hall, Robert D.
    D'Auria, John C.
    Ferreira, Antonio C. Silva
    Gibon, Yves
    Kruszka, Dariusz
    Mishra, Puneet
    van de Zedde, Rick
    [J]. TRENDS IN PLANT SCIENCE, 2022, 27 (06) : 549 - 563
  • [40] High-throughput phenotyping technology for maize roots
    Grift, T. E.
    Novais, J.
    Bohn, M.
    [J]. BIOSYSTEMS ENGINEERING, 2011, 110 (01) : 40 - 48